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Abstract

Factor Analysis (FA) is a technique of fundamental importance that is widely used in
classical and modern multivariate statistics, psychometrics, and econometrics. In this pa-
per, we revisit the classical rank-constrained FA problem which seeks to approximate an
observed covariance matrix (Σ) by the sum of a Positive Semidefinite (PSD) low-rank
component (Θ) and a diagonal matrix (Φ) (with nonnegative entries) subject to Σ − Φ
being PSD. We propose a flexible family of rank-constrained, nonlinear Semidefinite Op-
timization based formulations for this task. We introduce a reformulation of the problem
as a smooth optimization problem with convex, compact constraints and propose a unified
algorithmic framework, utilizing state of the art techniques in nonlinear optimization to
obtain high-quality feasible solutions for our proposed formulation. At the same time, by
using a variety of techniques from discrete and global optimization, we show that these
solutions are certifiably optimal in many cases, even for problems with thousands of vari-
ables. Our techniques are general and make no assumption on the underlying problem
data. The estimator proposed herein aids statistical interpretability and provides compu-
tational scalability and significantly improved accuracy when compared to current, publicly
available popular methods for rank-constrained FA. We demonstrate the effectiveness of
our proposal on an array of synthetic and real-life datasets. To our knowledge, this is the
first paper that demonstrates how a previously intractable rank-constrained optimization
problem can be solved to provable optimality by coupling developments in convex analysis
and in global and discrete optimization.

Keywords: factor analysis, rank minimization, semidefinite optimization, first order
methods, nonlinear optimization, global optimization, discrete optimization

1. Introduction

Factor Analysis (FA) (Anderson, 2003; Bartholomew et al., 2011; Mardia et al., 1979),
a widely used methodology in classical and modern multivariate statistics, is used as a
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tool to obtain a parsimonious representation of the correlation structure among a set of
variables in terms of a smaller number of common hidden factors. A basic FA model is of
the form x = Lf + ε, where xp×1 is the observed random vector, fr1×1 (with r1 ≤ p; note
that we do not necessarily restrict r1 to be small) is a random vector of common factor
variables or scores, Lp×r1 is a matrix of factor loadings and εp×1 is a vector of uncorrelated
random variables. We assume that the variables are mean-centered, f and ε are uncorrelated
and without loss of generality, the covariance of f is the identity matrix. We will denote
Cov(ε) = Φ = diag(Φ1, . . . ,Φp). It follows that

Σ = Σc + Φ, (1)

where Σ is the covariance matrix of x and Σc := LL′ is the covariance matrix corresponding
to the common factors. Decomposition (1) suggests that Σ can be written as the sum of
a positive semidefinite (PSD) matrix Σc of rank r1 and a nonnegative diagonal matrix
(Φ) corresponding to the errors. In particular, the variance of the ith coordinate of x :=
(x1, . . . , xp), i.e., var(xi) =

∑
k l

2
ik + Φi, i = 1, . . . , p, splits into two parts, where L = ((lik)).

The first part (
∑

k l
2
ik) is known as the communality estimate (since this is the variance of

the factors common to all the xi’s) and the remaining part Φi is the variance specific to the
ith variable (Φi’s are also referred to as the unique variances or simply uniquenesses).

Formulation of the estimator: In decomposition (1), the assumption that the rank
(r1) of Σc is small compared to p is fairly stringent—see Guttman (1958); Shapiro (1982);
ten Berge (1998) for a historical overview of the concept. In a classical paper of Guttman
(1958), the author argued based on psychometric evidence that Σc is often found to have
high algebraic rank. In psychometric case studies it is rather rare that the covariance
structure can be completely explained by a few common factors corresponding to mental
abilities—in fact there is evidence of at least hundreds of common factors being present with
the number growing without an upper bound. Formally, this means that instead of assuming
that Σc has exactly low-rank it is practical to assume that it can be well-approximated by
a low-rank matrix, namely, L1L

′
1 with L1 ∈ Rp×r. More precisely, L1L

′
1 is the best rank-r

approximation to Σc in the matrix q-norm (also known as the Schatten norm), as defined
in (5), and (Σc − L1L

′
1) is the residual component. Following psychometric terminology,

L1 corresponds to the r most significant factors representative of mental abilities and the
residual Σc−L1L

′
1 corresponds to the remaining psychometric factors unexplained by L1L

′
1.

Thus we can rewrite decomposition (1) as follows:

Σ = L1L
′
1︸ ︷︷ ︸

:=Θ

+
(
Σc − L1L

′
1

)︸ ︷︷ ︸
:=N

+Φ, (2)

where we use the notation Θ = L1L
′
1 and N = (Σc − L1L

′
1) with Θ +N = Σc = Σ−Φ.

Note that Θ denotes the best rank-r approximation to (Σ−Φ), with the residual component
beingN = Σ−Φ−Θ. Note that the entries in Φ need to be non-negative1 and Σ−Φ � 0.
In fact, in the words of ten Berge (1998) (see p. 326)

1. Negative estimates of the diagonals of Φ are unwanted since they correspond to variances, but some FA
estimation procedures often lead to negative estimates of Φ—these are popularly known in the literature
as Heywood cases and have invited a significant amount of discussion in the community.
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“. . . However, when Σ − Φ the covariance matrix for the common parts of the
variables, would appear to be indefinite, that would be no less embarrassing than
having a negative unique variance in Φ. . . ”

We further refer the reader to Mardia et al. (1979) discussing the importance of Σ−Φ
being PSD.2 We thus have the following natural structural constraints on the parameters:

Θ � 0, Φ = diag(Φ, . . . ,Φp) � 0 and Σ−Φ � 0. (3)

Motivated by the above considerations, we present the following rank-constrained esti-
mation problem for FA:

minimize ‖Σ− (Θ + Φ)‖qq
s.t. rank(Θ) ≤ r

Θ � 0

Φ = diag(Φ1, . . . ,Φp) � 0

Σ−Φ � 0,

(4)

where Θ ∈ Rp×p,Φ ∈ Rp×p are the optimization variables, and for a real symmetric matrix
Ap×p, its matrix q-norm, also known as the Schatten norm (or Schatten-von-Neumann
norm) is defined as

‖A‖q :=

(
p∑
i=1

|λi(A)|q
) 1

q

, (5)

where λi(A), i = 1, . . . , p, are the (real) eigenvalues of A.

Interpreting the estimator: The estimation criterion (4) seeks to jointly obtain the
(low-rank) common factors and uniquenesses that best explain Σ in terms of minimizing
the matrix q-norm of the error Σ − (Θ + Φ) under the PSD constraints (3). Note that
criterion (4) does not necessarily assume that Σ exactly decomposes into a low-rank PSD
matrix and a non-negative diagonal matrix. Problem (4) enjoys curious similarities with
Principal Component Analysis (PCA). In PCA, given a PSD matrix Σ the leading r prin-
cipal component directions of Σ are obtained by minimizing ‖Σ −Θ‖q subject to Θ � 0
and rank(Θ) ≤ r. If the optimal solution Φ to Problem (4) is given, Problem (4) is analo-
gous to a rank-r PCA on the residual matrix Σ−Φ—thus it is naturally desirable to have
Σ−Φ � 0. In PCA one is interested in understanding the proportion of variance explained
by the top-r principal component directions:

∑r
i=1 λi(Σ)/

∑p
i=1 λi(Σ). The denominator∑p

i=1 λi(Σ) = Tr(Σ) accounts for the total variance explained by the covariance matrix Σ.

Analogously, the proportion of variance explained by Θ̂r (which denotes the best rank r
approximation to Σ−Φ) is given by

∑r
i=1 λi(Σ−Φ)/

∑p
i=1 λi(Σ−Φ)—for this quantity

to be interpretable it is imperative that Σ − Φ � 0. In the above argument, of course,
we assumed that Φ is given. In general, Φ needs to be estimated: Problem (4) achieves
this goal by jointly learning Φ and Θ. We note that certain popular approaches of FA (see
Sections 1.1 and 1.2) do not impose the PSD constraint Σ−Φ as a part of the estimation

2. However, the estimation method described in Mardia et al. (1979) does not guarantee that Σ−Φ � 0.
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scheme—leading to indefinite Σ−Φ—thereby rendering statistical interpretations trouble-
some. Our numerical evidence suggests that the quality of estimates of Θ and Φ obtained
from Problem (4) outperform those obtained by other competing procedures which do not
incorporate the PSD constraints into their estimation criteria.

Choice of r: In exploratory FA, it is standard to consider several choices of r and study
the manner in which the proportion of variance explained by the common factors saturates
with increasing r. We refer the reader to popularly used methods described in Anderson
(2003); Bartholomew et al. (2011); Mardia et al. (1979) and more modern techniques (Bai
and Ng, 2008, see also references therein) for the choice of r.

Estimate of Covariance Matrix: In the finite sample setting, we set Σ to be the
sample covariance matrix. A consequence of solving Problem (4) is that we get an estimate
for the covariance matrix given by Θ̂ + Φ̂—in this sense, criterion (4) can be viewed as
a regularization scheme: the rank constraint on Θ encourages parsimony and the PSD
constraints encourage interpretability, as discussed above.

In this paper, we propose a general computational framework to solve Problem (4) for
any q ≥ 1. The well-known Schatten q-norm appearing in the loss function is chosen for
flexibility—it underlines the fact that our approach can be applied for any q ≥ 1. Note
that the estimation criterion (4) (even for the case q = 1) does not seem to appear in prior
work on approximate minimum rank Factor Analysis (MRFA) (ten Berge and Kiers, 1991;
Shapiro and ten Berge, 2002). However, we show in Proposition 1 that Problem (4) for
the special case q = 1 turns out to be equivalent to MRFA. For q = 2, the loss function is
the familiar squared Frobenius norm also used in MINRES, though the latter formulation
is not equivalent to Problem (4), as explained in Section 1.1. We place more emphasis on
studying the computational properties for the more common norms q ∈ {1, 2}.

The presence of the rank constraint in Problem (4) makes the optimization problem non-
convex. Globally optimizing Problem (4) or for that matter obtaining a good stationary
point is quite challenging. We propose a new equivalent smooth formulation to Problem (4)
which does not contain the combinatorial rank constraint. We employ simple and tractable
sequential convex relaxation techniques with guaranteed convergence properties and excel-
lent computational properties to obtain a stationary point for Problem (4). An important
novelty of this paper is to present certifiable lower bounds on Problem (4) without resorting
to structural assumptions, thus making it possible to solve Problem (4) to provable optimal-
ity. Towards this end we propose new methods and ideas that incorporate state-of-the-art
developments in nonlinear and global optimization.3

1.1 A selective overview of related FA estimators

FA has a long and influential history which dates back more than a hundred years. The
notion of FA possibly first appeared in Spearman (1904) for the one factor model, which
was then generalized to the multiple factors model by various authors (see, for example,

3. The class of optimization problems studied in this paper involve global minimization of nonconvex,
continuous semidefinite optimization problems. Computational methods for this class of problems are
in a nascent stage; further, such methods are significantly less developed when compared to those for
mixed integer linear optimization problems, thus posing a major challenge in this work.
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Thurstone 1947). Significant contributions related to computational methods for FA have
been nicely documented in Bai and Ng (2008); Harman and Jones (1966); Jöreskog (1967,
1978); Lawley and Maxwell (1962); Ledermann (1937); Rao (1973); Shapiro (1982); and ten
Berge and Kiers (1991), among others.

We will briefly describe some widely used approaches for FA that are closely related to
the approach pursued herein and also point out their connections.

Constrained Minimum Trace Factor Analysis (MTFA): This approach (ten Berge
et al., 1981; Riccia and Shapiro, 1982) seeks to decompose Σ exactly into the sum of a
diagonal matrix and a low-rank component, which are estimated via the following convex
optimization problem:

minimize Tr(Θ)

s.t. Θ � 0
Σ = Θ + Φ
Φ = diag(Φ1, . . . ,Φp) � 0,

(6)

with variables Θ,Φ. Because Θ is PSD, Tr(Θ) =
∑p

i=1 λi(Θ) is a convex surrogate (Fazel,
2002) for the rank of Θ—Problem (6) may thus be viewed as a convexification of the rank
minimization problem

minimize rank(Θ)

s.t. Θ � 0
Σ = Θ + Φ
Φ = diag(Φ1, . . . ,Φp) � 0.

(7)

In general, Problems (6) and (7) are not equivalent. See Riccia and Shapiro (1982); Saun-
derson et al. (2012); Shapiro (1982) (and references therein) for further connections between
the minimizers of (6) and (7).

A main difference between formulations (4) and (7) is that the former allows an error
in the residual (Σ−Θ−Φ) by constraining Θ to have low-rank, unlike (7) which imposes
a hard constraint Σ = Θ + Φ. As noted earlier, this can be quite restrictive in various
applications. Even if one views Problem (6) as imposing a less stringent requirement than
that of Problem (7), we see two distinct advantages of Problem (4) over Problem (6): it
offers the modeling flexibility of controlling the complexity, viz. rank, of solutions via the
choice of r; and it provides smaller of estimates of rank for a comparable amount of explained
variance, as substantiated by experimental findings presented in Section 5.

Approximate Minimum Rank Factor Analysis (MRFA): This method (see for ex-
ample, ten Berge and Kiers, 1991; Shapiro and ten Berge, 2002) considers the following
optimization problem:

minimize

p∑
i=r+1

λi(Σ−Φ)

s.t. Φ = diag(Φ1, . . . ,Φp) � 0
Σ−Φ � 0,

(8)
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where the optimization variable is Φ. Proposition 1 presented below establishes that Prob-
lem (8) is equivalent to the rank-constrained FA formulation (4) for the case q = 1. This
connection does not appear to be formally established in ten Berge and Kiers (1991). We
believe that criterion (4) for q = 1 is easier to interpret as an estimation criterion for FA
models over (8). ten Berge and Kiers (1981, 1991) describe a method4 for numerically
optimizing (8)—as documented in the code for MRFA (ten Berge and Kiers, 2003), their
implementation can handle problems of size p ≤ 20.

Principal Component (PC) Factor Analysis: Principal Component factor analysis
or PC in short (Connor and Korajczyk, 1986; Bai and Ng, 2008) implicitly assumes that
Φ = σ2Ip×p, for some σ2 > 0 and performs a low-rank PCA on Σ. It is not clear how
to estimate Φ via this method such that Φi ≥ 0 and Σ −Φ � 0. Following Mardia et al.
(1979), the Φ’s may be estimated after estimating Θ̂ via the update rule Φ̂ = diag(Σ−Θ̂)—
the estimates thus obtained, however, need not be non-negative. Furthermore, it is not
guaranteed that the condition Σ−Φ � 0 is met.

Minimum Residual Factor Analysis (MINRES): This approach (Harman and Jones,
1966; Shapiro and ten Berge, 2002) considers the following optimization problem (with
respect to the variable Lp×r):

minimize
∑

1≤i 6=j≤p

(
σij − (LL′)ij

)2
, (9)

where Σ := ((σij)), Θ = LL′ and the sum (in the objective) is taken over all the off-diagonal
entries. Formulation (9) is equivalent to the nonconvex optimization problem

minimize ‖Σ− (Θ + Φ)‖22
s.t. rank(Θ) ≤ r

Θ � 0
Φ = diag(Φ1, . . . ,Φp),

(10)

with variables Θ and Φ, where Φi, i ≥ 1, are unconstrained. If Θ̂ is a minimizer of
Problem (10), then any L̂ satisfying L̂L̂′ = Θ̂ minimizes (9) and vice-versa.

Various heuristic approaches are used to for Problem (9). The R package psych, for
example, uses a black box gradient based tool optim to minimize the nonconvex Problem (9)
with respect to L. Once L̂ is estimated, the diagonal entries of Φ are estimated as Φ̂i =
σii − (L̂L̂′)ii, for i ≥ 1. Note that Φ̂i obtained in this fashion may be negative5 and the
condition Σ−Φ � 0 may be violated.

Generalized Least Squares, Principal Axis and variants: The Ordinary Least
Squares (OLS) method for FA (Bartholomew et al., 2011) considers formulation (10) with
the additional constraint that Φi ≥ 0 ∀i. The Weighted Least Squares (WLS) or the gener-
alized least squares method (see for example, Bartholomew et al., 2011) considers a weighted
least squares objective:

‖W (Σ− (Θ + Φ))‖22 .

4. The method is similar to Algorithm 1 presented herein for the case of q = 1; however, ten Berge and
Kiers (1981, 1991) rely on a heuristic procedure, as described in Bentler and Woodward (1980), for the
subproblem with respect to Φ.

5. If Φ̂i < 0, some ad-hoc procedure is used to threshold it to a nonnegative quantity.
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As in the ordinary least squares case, here too we assume that Φi ≥ 0. Various choices of
W are possible depending upon the application, with W ∈ {Σ−1,Φ−1} being a couple of
popular choices.

The Principal Axis (PA) FA method (Bartholomew et al., 2011; Revelle, 2015) is pop-
ularly used to estimate factor model parameters based on criterion (10) along with the
constraints Φi ≥ 0 ∀i. This method starts with a nonnegative estimate Φ̂ and performs
a rank r eigendecomposition on Σ − Φ̂ to obtain Θ̂. The matrix Φ̂ is then updated to
match the diagonal entries of Σ− Θ̂, and the above steps are repeated until the estimate Φ̂
stabilizes.6 Note that in this procedure the estimate Θ̂ may fail to be PSD and the entries
of Φ̂i may be negative as well. Heuristic restarts and various initializations are often carried
out to arrive at a reasonable solution (see for example discussions in Bartholomew et al.
2011).

In summary, the least squares stylized methods described above may lead to estimates
that violate one or more of the constraints: Σ−Φ � 0 , Θ � 0 and Φ � 0.

Maximum Likelihood for Factor Analysis: This approach (Bai and Li, 2012; Jöreskog,
1967; Mardia et al., 1979; Roweis and Ghahramani, 1999; Rubin and Thayer, 1982) is an-
other widely used method in FA and typically assumes that the data follows a multivariate
Gaussian distribution. This procedure maximizes a likelihood function and is quite different
from the loss functions pursued in this paper and discussed above. The estimator need not
exist for any Σ—see for example Robertson and Symons (2007).

Most of the methods described in Section 1.1 are widely used and their implementations
are available in statistical packages psych (Revelle, 2015), nFactors (Raiche and Magis,
2011), GPArotation (Bernaards and Jennrich, 2005), and others and are publicly available
from CRAN.7

1.2 Broad categories of factor analysis estimators

A careful investigation of the methods described above suggests that they can be divided
into two broad categories. Some of the above estimators explicitly incorporate a PSD
structural assumption on the residual covariance matrix Σ − Φ in addition to requiring
Θ � 0 and Φ � 0 while the others do not. As already pointed out, these constraints are
important for statistical interpretability. We propose to distinguish between the following
two broad categories of FA algorithms:

(A) This category is comprised of FA estimation procedures cast as nonlinear Semidefinite
Optimization (SDO) problems—estimation takes place in the presence of constraints
of the form Σ − Φ � 0, along with Θ � 0 and Φ � 0. Members of this category
are MRFA, MTFA and more generally Problem (4).

Existing approaches for these problems are typically not scalable: for example, we are
not aware of any algorithm (prior to this paper) for Problem (8) (MRFA) that scales
to covariance matrices with p larger than thirty. Indeed, while theoretical guarantees

6. We are not aware of a proof, however, showing the convergence of this procedure.
7. http://cran.us.r-project.org
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of optimality exist in certain cases (Saunderson et al., 2012), the conditions required
for such results to hold are generally difficult to verify in practice.

(B) This category includes classical FA methods which are not based on nonlinear SDO
based formulations (as in Category (A)). MINRES, OLS, WLS, GLS, PC and PA

based FA estimation procedures (as described in Section 1.1) belong to this category.
These methods are generally scalable to problem sizes where p is of the order of a few
thousand—significantly larger than most procedures belonging to Category (A)—and
are implemented in open-source R-packages.

Contributions: Our contributions in this paper may be summarized as follows:

1. We consider a flexible family of FA estimators which can be obtained as solutions to
rank-constrained nonlinear SDO problems. In particular, our framework provides a
unifying perspective on several existing FA estimation approaches.

2. We propose a novel exact reformulation of the rank-constrained FA problem (4) as
a smooth optimization problem with convex compact constraints. We also develop a
unified algorithmic framework utilizing modern optimization techniques to obtain high
quality solutions to Problem (4). Our algorithms, at every iteration, simply require
computing a low-rank eigendecomposition of a p× p matrix and a structured scalable
convex SDO. Our proposal is capable of solving FA problems involving covariance
matrices having dimensions up to a few thousand, thereby making it on par with the
most scalable FA methods used currently.8

3. Our SDO formulation enables us to estimate the underlying factors and unique vari-
ances under the restriction that the residual covariance matrix is PSD—a charac-
teristic that is absent in several popularly used FA methods. This aids statistical
interpretability, especially in drawing parallels with PCA and understanding the pro-
portion of variance explained by a given number of factors. Methods proposed herein
produce superior quality estimates, in terms of various performance metrics, when
compared to existing FA approaches. To our knowledge, this is the first paper demon-
strating that certifiably optimal solutions to a rank-constrained problem can be found
for problems of realistic sizes, without making any assumptions on the underlying
data.

4. Using techniques from discrete and global optimization, we develop a branch-and-
bound algorithm which proves that the low-rank solutions found are often optimal in
seconds for problems on the order of p = 10 variables, in minutes for problems on the
order of p = 100, and in days for some problems on the order of p = 4000. As the
selected rank increases, so too does the computational burden of proving optimality.
It is particularly crucial to note that the optimal solutions for all problems we consider
are found very quickly, and that vast majority of computational time is then spent on
proving optimality. Hence, for a practitioner who is not particularly concerned with
certifying optimality, our techniques for finding feasible solutions provide high-quality
estimates quickly.

8. An implementation of our approach is available at https://github.com/copenhaver/factoranalysis.
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5. We provide computational evidence demonstrating the favorable performance of our
proposed method. Finally, to the best of our knowledge this is the first paper that
views various FA methods in a unified fashion via a modern optimization lens and
attempts to compare a wide range of FA techniques in large scale.

Structure of the paper: The paper is organized as follows. In Section 1 we propose
a flexible family of optimization Problems (4) for the task of statistical estimation in FA
models. Section 2 presents an exact reformulation of Problem (4) as a nonlinear SDO
without the rank constraint. Section 3 describes the use of nonlinear optimization techniques
such as the Conditional Gradient (CG) method (Bertsekas, 1999) adapted to provide feasible
solutions (upper bounds) to our formulation. First order methods employed to compute
the convex SDO subproblems are also described in the same section. In Section 4, we
describe our method for certifying optimality of the solutions from Section 3 in the case
when q = 1. In Section 5, we present computational results demonstrating the effectiveness
of our proposed method in terms of (a) modeling flexibility in the choice of the number of
factors r and the parameter q, (b) scalability, and (c) the quality of solutions obtained in
a wide array of real and synthetic datasets—comparisons with several existing methods for
FA are considered. Section 6 contains our conclusions.

2. Reformulations of Problem (4)

Let λ(A) denote the vector of eigenvalues of A, arranged in decreasing order, i.e.,

λ1(A) ≥ λ2(A) ≥ . . . ≥ λp(A). (11)

The following proposition presents the first reformulation of Problem (4) as a continuous
eigenvalue optimization problem with convex compact constraints. Proofs of all results can
be found in Appendix A.

Proposition 1 (a) For any q ≥ 1, Problem (4) is equivalent to:

(CFAq) minimize fq(Φ; Σ) :=

p∑
i=r+1

λqi (Σ−Φ)

s.t. Φ = diag(Φ1, . . . ,Φp) � 0
Σ−Φ � 0,

(12)

where Φ is the optimization variable.
(b) Suppose Φ∗ is a minimizer of Problem (12), and let

Θ∗ = U diag
(
λ1(Σ−Φ∗), . . . , λr(Σ−Φ∗), 0, . . . , 0

)
U′, (13)

where Up×p is the matrix of eigenvectors of Σ−Φ∗. Then (Θ∗,Φ∗) is a solution to Prob-
lem (4).

Problem (12) is a nonlinear SDO in Φ, unlike the original formulation (4) that estimates
Θ and Φ jointly. Note that the rank constraint does not appear in Problem (12) and the
constraint set of Problem (12) is convex and compact. However, Problem (12) is nonconvex
due to the nonconvex objective function

∑p
i=r+1 λ

q
i (Σ−Φ). For q = 1 the function appearing

in the objective of (12) is concave and for q > 1, it is neither convex nor concave.
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Proposition 2 The estimation Problem (4) is equivalent to

minimize ‖Σ− (Θ + Φ)‖qq
s.t. rank(Θ) ≤ r

Θ � 0

Φ = diag(Φ1, . . . ,Φp) � 0

Σ−Φ � 0

Σ−Θ � 0.

(14)

Note that Problem (14) has an additional PSD constraint Σ−Θ � 0 which does not explic-
itly appear in Problem (4). It is interesting to note that the two problems are equivalent.
By virtue of Proposition 2, Problem (14) can as well be used as the estimation criterion
for rank constrained FA. However, we will work with formulation (4) because it is easier to
interpret from a statistical perspecitve.

Special instances of (CFAq): We show that some well-known FA estimation problems
can be viewed as special cases of our general framework.

For q = 1, Problem (12) reduces to MRFA, as described in (8). For q = 1 and r = 0,
Problem (12) reduces to MTFA (6). When q = 2, we get a variant of (10), i.e., a PSD
constrained analogue of MINRES

minimize
p∑

i=r+1
λ2
i (Σ−Φ)

s.t. Φ = diag(Φ1, . . . ,Φp) � 0
Σ−Φ � 0.

(15)

Note that unlike Problem (10), Problem (15) explicitly imposes PSD constraints on Φ
and Σ−Φ. The objective function in (12) is continuous but non-smooth. The function is
differentiable at Φ if and only if the r and (r+1)th eigenvalues of Σ−Φ are distinct (Lewis,
1996; Shapiro and ten Berge, 2002), i.e., λr+1(Σ−Φ) < λr(Σ−Φ). The non-smoothness of
the objective function in Problem (12) makes the use of standard gradient based methods
problematic (Bertsekas, 1999). Theorem 1 presents a reformulation of Problem (12) in
which the objective function is continuously differentiable.

Theorem 1 (a) The estimation criterion given by Problem (4) is equivalent to9

minimize gq(W,Φ) := Tr(W(Σ−Φ)q)
s.t. Φ = diag(Φ1, . . . ,Φp) � 0

Σ−Φ � 0
I �W � 0
Tr(W) = p− r.

(16)

(b) The solution Θ̂ of Problem (4) can be recovered from the solution Ŵ, Φ̂ of Problem (16)
via:

Θ̂ := Û diag(λ̂1, . . . , λ̂r, 0, . . . , 0)Û′, (17)

9. For any PSD matrix A, with eigendecomposition A = UA diag(λ1, . . . , λp)U′A, we define Aq :=
UA diag(λq

1, . . . , λ
q
p)U′A, for any q ≥ 1.

10
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where Û is the matrix formed by the p eigenvectors corresponding to the eigenvalues λ̂1, . . . , λ̂p
(arranged in decreasing order) of the matrix Σ−Φ̂. Given Φ̂, any solution Θ̂ (given by (17))
is independent of q.

In Problem (16), if we partially minimize the function gq(W,Φ) over Φ (with fixed W),
the resulting function is concave in W. This observation leads to the following proposition.

Proposition 3 The function Gq(W) obtained upon (partially) minimizing gq(W,Φ) over
Φ (with W fixed) in Problem (16), given by

Gq(W) := inf
Φ

gq(W,Φ)

s.t. Φ = diag(Φ1, . . . ,Φp) � 0
Σ−Φ � 0,

(18)

is concave in W. The sub-gradients of the function Gq(W) exist and are given by:

∇Gq(W) = (Σ− Φ̂(W))q, (19)

where Φ̂(W) is a minimizer of the convex optimization Problem (18).

In light of Proposition 3, we present another reformulation of Problem (4) as the fol-
lowing concave minimization problem:

minimize Gq(W)

s.t. I �W � 0
Tr(W) = p− r,

(20)

where the function Gq(W) is differentiable if and only if Φ̂(W) is unique.
Note that by virtue of Proposition 1, Problems (12) and (20) are equivalent. Therefore,

it is natural to ask whether one formulation might be favored over the other from a compu-
tational perspective. Towards this end, note that both Problems (12) and (20) involve the
minimization of a non-smooth objective function, over convex compact constraints. How-
ever, the objective function of Problem (12) is nonconvex (for q > 1) whereas the one in
Problem (20) is concave (for all q ≥ 1). We will see in Section 3 that CG-based algorithms
can be applied to a concave minimization problem (even if the objective function is not
differentiable); however, CG applied to general non-smooth objective functions has limited
convergence guarantees. Thus, formulation (20) is readily amenable to CG-based optimiza-
tion algorithms, unlike formulation (12). This seems to make Problem (20) computationally
more appealing than Problem (12).

3. Finding Upper Bounds

This section presents a unified computational framework for the class of problems (CFAq).
Problem (16) is a nonconvex smooth optimization problem and obtaining a stationary point
is quite challenging. We propose iterative schemes based on the Conditional Gradient
(CG) algorithm (Bertsekas, 1999)—a generalization of the Frank-Wolfe algorithm (Frank

11
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and Wolfe, 1956)—to obtain a stationary point of the problem. The appealing aspect
of our framework is that every iteration of the algorithm requires solving a convex SDO
problem which is computationally tractable. While off-the-shelf interior point algorithms—
for example SDPT3 (Toh et al., 1999), Yalmip (Löfberg, 2004), and MOSEK (Andersen and
Andersen, 2000)—can be used to solve the convex SDO problems, they typically do not
scale well for large problems due to intensive memory requirements. In this vein, first
order algorithms have received a lot of attention (Nesterov, 2004, 2005, 2007) in convex
optimization of late, due to their low cost per iteration, low-memory requirements, and
ability to deliver solutions of moderate accuracy for large problems within a modest time
limit. We use first order methods to solve the convex SDO problems. We present one
primary scheme based on the CG algorithm:

Algorithm 1: This scheme, described in Section 3.1, applies CG on the op-
timization Problem (20), where the function Gq(W) defined in (18) is concave
(and possibly non-smooth).

In addition, in Appendix B we present an alternative approach that applies CG to Prob-
lem (16), where the objective function gq(W,Φ) is smooth.

To make notation simpler, we will use the following shorthand:

Ψp,p−r := {W ∈ Rp×p : I �W � 0, Tr(W) = p− r} (21)

and FΣ = {Φ : Σ−Φ < 0, Φ = diag(Φ1, . . . ,Φp) < 0}.

3.1 A CG based algorithm for Problem (20)

The CG method for Problem (20) requires solving a linearization of the concave objective
function. At iteration k, if W(k) is the current estimate of W, the new estimate W(k+1) is
obtained by

W(k+1) ∈ arg min
W∈Ψp,p−r

〈
∇Gq(W(k)),W

〉
= arg min

W∈Ψp,p−r

Tr(W(Σ−Φ(k))q), (22)

where by Proposition 3, (Σ −Φ(k))q is a sub-gradient of Gq(W) at W(k) with Φ(k) given
by

Φ(k) ∈ arg min
Φ∈FΣ

Tr(W(k)(Σ−Φ)q) (23)

No explicit line search is necessary here because the minimum will always be at the new
point, i.e., Φ(k), due to the concavity of the objective function. The sequence W(k) is
recursively computed via (22) until the convergence criterion

Gq(W
(k))−Gq(W(k+1)) ≤ TOL ·Gq(W(k)), (24)

for some user-defined tolerance, TOL > 0, is met. A short description of the procedure
appears in Algorithm 1.

Before we present the convergence rate of Algorithm 1, we will need to introduce some
notation. For any point W belonging to the feasible set of Problem (20) let us define ∆(W)
as follows:

∆(W) := inf
W∈Ψp,p−r

〈∇Gq(W),W −W〉. (25)

12
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Algorithm 1 A CG based algorithm for formulation (20)

1. Initialize with W(1) (k = 1), feasible for Problem (20) and repeat, for k ≥ 2, Steps 2-3
until convergence criterion (24) is satisfied.

2. Update Φ (with W fixed) by solving (23).

3. Update W (with Φ fixed) by solving (22), to get W(k+1).

Further, W∗ satisfies the first order stationary condition for Problem (20) if W∗ is feasible
for the problem and ∆(W∗) ≥ 0.

We now present Theorem 2 establishing the rate of convergence and associated con-
vergence properties of Algorithm 1. The proof (along with all other omitted proofs) is
contained in Appendix A.

Theorem 2 If W(k) is a sequence produced by Algorithm 1, then Gq(W
(k)) is a monotone

decreasing sequence and every limit point W(∞) of the sequence W(k) is a stationary point
of Problem (20). Furthermore, Algorithm 1 has a convergence rate of O(1/K) (with K
denoting the iteration index) to a first order stationary point of Problem (20), i.e.,

min
i=1,...,K

{
−∆(W(i))

}
≤ Gq(W

(1))−Gq(W(∞))

K
. (26)

3.2 Solving the convex SDO problems

Algorithm 1 requires sequentially solving convex SDO problems in W and Φ. We describe
herein how these subproblems can be solved efficiently.

3.2.1 Solving the SDO problem with respect to W

A generic SDO problem associated with Problem (22) requires updating W as

Ŵ ∈ arg min
W∈Ψp,p−r

〈W,W̃〉, (27)

for some fixed symmetric W̃p×p, depending upon the algorithm and the choice of q, de-
scribed as follows. For Algorithm 1 the update in W at iteration k for Problem (22),

corresponds to W̃ = (Σ−Φ(k+1))q.

A solution to Problem (27) is given by Ŵ =
∑p

i=r+1 uiu
′
i, where u1, . . . ,up are the

eigenvectors of the matrix W̃, corresponding to the eigenvalues λ1(W̃), . . . , λp(W̃).

3.2.2 Solving the SDO problem with respect to Φ

The SDO problem arising from the update of Φ is not as straightforward as the update
with respect to W. Before presenting the general case, it helps to consider a few special
cases of (CFAq). For q = 1 the objective function of Problem (16)

g1(W,Φ) = 〈W,Σ〉 −
p∑
i=1

wiiΦi (28)

13
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is linear in Φ (for fixed W). For q = 2, the objective function of Problem (16)

g2(W,Φ) = Tr(WΣ2) +

p∑
i=1

(wiiΦ
2
i − 2〈wi,σi〉Φi) (29)

is a convex quadratic in Φ (for fixed W).
For Algorithm 1, the partial minimizations with respect to Φ, for q = 1 and q = 2,

require minimizing Problems (28) and (29), respectively.
Various instances of optimization problems with respect to Φ such as those appearing

in Algorithm 1 can be viewed as special cases of the following family of SDO problems:

minimize
Φ∈FΣ

p∑
i=1

(
ciΦ

2
i + diΦi

)
(30)

where ci ≥ 0 and di for i = 1, . . . , p are problem parameters that depend upon the choice of
algorithm and q. We now present a first order convex optimization scheme for solving (30).

A First Order Scheme for Problem (30)

With the intention of providing a simple and scalable algorithm for the convex SDO problem,
we use the Alternating Direction Method of Multipliers (Bertsekas, 1999; Boyd et al., 2011)
(ADMM). We introduce a splitting variable Λ = Σ − Φ and rewrite Problem (30) in the
following equivalent form:

minimize
Φ,Λ

p∑
i=1

(ciΦ
2
i + diΦi)

s.t. Φ = diag(Φ1, . . . ,Φp) � 0

Λ � 0

Λ = Σ−Φ.

(31)

The Augmented Lagrangian for the above problem is:

Lρ(Φ,Λ,ν) :=

p∑
i=1

(ciΦ
2
i + diΦi) +

〈
ν,Λ− (Σ−Φ)

〉
+
ρ

2
‖Λ− (Σ−Φ)‖22, (32)

where ρ > 0 is a scalar and 〈·, ·〉 denotes the standard trace inner product. ADMM involves
the following three updates:

Φ(k+1) ∈ arg min
Φ=diag(Φ1,...,Φp)�0

Lρ(Φ,Λ(k),ν(k)), (33)

Λ(k+1) ∈ arg min
Λ�0

Lρ(Φ(k+1),Λ,ν(k)), (34)

ν(k+1) = ν(k) + ρ(Λ(k+1) − (Σ−Φ(k+1))), (35)

and produces a sequence {(Φ(k),λ(k),ν(k))}, k ≥ 1 — the convergence properties of the
algorithm are quite well known (Boyd et al., 2011).

14
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Problem (33) can be solved in closed form as

Φ
(k+1)
i =

ρ

ρ+ 2ci
max

{
(σii − λ(k)

ii )−
(di + ν

(k)
ii )

ρ
, 0

}
, i = 1, . . . , p. (36)

The update with respect to Λ in (34) requires an eigendecomposition:

Λ(k+1) = arg min
Λ�0

∥∥∥∥Λ− (Σ−Φ(k+1) − 1

ρ
ν(k))

∥∥∥∥2

2

=PS+
p

(
Σ−Φ(k+1) − 1

ρ
ν(k)

)
,

(37)

where, the operator PS+
p

(A) denotes the projection of a symmetric matrix A onto the cone of

PSD matrices of dimension p× p: PS+
p

(A) = UA diag

(
max {λ1, 0} , . . . ,max {λp, 0}

)
U′A,

where, A = UA diag(λ1, . . . , λp)U
′
A is the eigendecomposition of A.

Stopping criterion: The ADMM iterations (33)—(35) are continued till the values of
‖Λ(k+1) − (Σ −Φ(k+1))‖2 and the relative change in the objective values of Problem (30)
become smaller than a certain threshold, say, TOL×α, where α ∈ {10−1, . . . , 10−3}—this is
typically taken to be smaller than the convergence threshold for the CG iterations (TOL).

Computational cost of Problem (30): The most intensive computational stage in the
ADMM procedure is in performing the projection operation (37); this requires O(p3) opera-
tions due to the associated eigendecomposition. This needs to be done for as many ADMM

steps, until convergence.
Since Problem (30) is embedded inside iterative procedures like Algorithm 1, the es-

timates of (Φ,Λ,ν) obtained by solving Problem (30) for a iteration index (of the CG
algorithm) provides a good warm-start for the Problem (30) in the subsequent CG iter-
ation. This is often found to decrease the number of iterations required by the ADMM

algorithm to converge to a prescribed level of accuracy.10

3.3 Computational cost of Algorithm 1

For Algorithm 1 and other CG-based algorithms for factor analysis (see Appendix B),
the computational bottleneck is in performing the eigendecomposition of a p × p matrix:
the W update requires performing a low-rank eigendecomposition of a p × p matrix and
the Φ update requires solving a problem of the form (30), which also costs O(p3). Since
eigendecompositions can easily be done for p of the order of a few thousands, the proposed
algorithms can be applied to that scale.

Note that most existing popular algorithms for FA belonging to Category (B) (see
Section 1.2) also perform an eigendecomposition with cost O(p3). Thus it appears that

10. The utility of warm starts is another compelling reason to apply a first-order-based approach instead of
interior point methods. Indeed, warm starts are well-known to perform quite poorly when incorporated
into interior point methods—often they can perform worse than cold starts (Yildirim and Wright, 2002;
John and Yildirim, 2008). Given the need to repeatedly solve similarly structured SDOs for both upper
bounds (as presented in this section) as well as lower bounds (as presented in Section 4), the ability to
effectively incorporate warm start information is crucial.
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Category (B) and the algorithms proposed herein have the same computational complexity
and hence these two estimation approaches are equally scalable.

4. Certificates of Optimality via Lower Bounds

In this section, we outline our approach to computing lower bounds to (CFAq) via techniques
from global optimization and matrix analysis. In particular, we focus on the case when q =
1.11 We begin with an overview of the method. We then discuss initialization parameters
for the method as well as branching rules and other refinements employed in our approach.

4.1 Overview of Method

Our primary problem of interest is to provide lower bounds to (CFA1), i.e.,

minimize
Φ∈FΣ

p∑
i=r+1

σi(Σ−Φ), (38)

or equivalently vis-à-vis Theorem 1,

minimize
W∈Ψp,p−r

Φ∈FΣ

〈W,Σ−Φ〉. (39)

One possible approach is to consider convex lower bounds to (39).

Definition 3 For a function f : Γ ⊆ Rn → R we define its convex envelope on Γ, denoted
convenvΓ(f), to be the largest convex function g with g ≤ f . In symbols,

g = sup{h : Γ→ R | h convex on Γ and h ≤ f}.

The convex envelope acts as the best possible convex lower bound for a given function.
Further, its precise form is well-known for certain classes of functions; one such function
of principle interest here is described in the following theorem. This is in some contexts
referred to as a McCormick hull and is widely used throughout the nonconvex optimization
literature (Floudas, 1999; Tawarmalani and Sahinidis, 2002a).

Theorem 4 (Al-Khayyal and Falk, 1983) If f : Γ = [0, 1] × [`, u] → R is defined by
f(x, y) = −xy, then the convex envelope of f on Γ is precisely

convenvΓ(f)(x, y) = max{−ux, `− `x− y}.

Further, |f(x, y)− convenvΓ(f)(x, y)| ≤ (u − `)/4. In particular, if |u − `| → 0, then
convenvΓ(f)→ f .

11. The general case for q > 1 can be addressed using similar (although more complicated) techniques as
applied to Problem (16), again applying principles developed in global optimization.
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Using this result we proceed to describe our approach for computing lower bounds to
(CFA1) as in (39). First observe that if Φi ∈ [`i, ui] and Wii ∈ [0, 1], then

convenv(−WiiΦi)(Wii,Φi) = max{−uiWii, `i − `iWii − Φi}
= −min{uiWii,Φi + `iWii − `i}.

Hence, the best possible convex lower bound to the objective in Problem (39), namely
〈W,Σ−Φ〉 = 〈W,Σ〉 −

∑
iWiiΦi, for ` ≤ diag(Φ) ≤ u and I �W � 0 is

〈W,Σ〉 −
p∑
i=1

min{uiWii,Φi + `iWii − `i}.

By introducing auxiliary variables e ∈ Rp to represent these convex envelopes, we obtain
the following linear SDO that is a lower bound to (39):

(LS`,u)

minimize
W,Φ,e

〈W,Σ〉 −
p∑
i=1

ei

s. t. Φ ∈ FΣ

W ∈ Ψp,p−r
`i ≤ Φi ≤ ui

ei ≤ Φi + `iWii − `i
ei ≤ uiWii

 ∀ i
The approach now lies in iteratively refining the lower and upper bounds on the di-

agonal entries of Φ, denoted ` and u, respectively, in order to improve the quality of the
approximations obtained via convex envelopes (cf. Theorem 4). This classical scheme is
known as spatial branch and bound and is shown in pseudocode in Algorithm 2 as it applies
to solving (39) by way of using (LS`,u).

In words, Algorithm 2 involves treating a given “node” n = [`,u], which represents
bounds on Φ, namely, ` ≤ diag(Φ) ≤ u. Here we solve (LS`,u) with the lower and upper
bounds ` and u, respectively, and see whether the resulting new feasible solution is better
(lower in objective value) than the best known incumbent solution encountered thus far.
We then see if the the bound for this node as obtained via (LS`,u) is better than the
currently known best feasible solution; if it is not at least the current best feasible solution’s
objective value (up to some numerical tolerance), then we must further branch on this node,
generating two new nodes n1 and n2 which partition the existing node n. Throughout, we
keep track of the worst lower bound encountered, which allows for us to terminate the
algorithm early while still having a provable suboptimality guarantee on the best feasible
solution Φf ∈ FΣ found thus far.

In light of Theorem 4, we have as a corollary the following theorem.

Theorem 5 Given numerical tolerance TOL > 0, Algorithm 2 (with an appropriate branch-
ing rule)12 terminates in finitely many iterations and solves (CFA1) to within an additive
optimality gap of at most TOL. Further, if Algorithm 2 is terminated early (i.e., before
Nodes = ∅), then the best feasible solution Φf at termination is guaranteed to be within an
additive optimality gap of zf − zlb.

12. A branching rule that is sufficient for convergence is selecting i ∈ arg maxi(u
c
i − `ci ) and α = (uc

i + `ci )/2.
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The algorithm we have considered here omits some important details. After discussing
properties of (LS`,u) in Section 4.2, we will discuss various aspects of Algorithm 2. In
Section 4.3, we detail how to choose input u0. We then turn our attention to branching
(line 5) in Section 4.4. In Section 4.5, we use results from matrix analysis coupled with
ideas from the modern practice of discrete optimization to make tailored refinements to
Algorithm 2. Finally, in Section 4.6 we include a discussion of node selection strategies.

Algorithm 2 Spatial branch and bound scheme to solve (39). The inputs are as follows:
(a) upper bounds u0 such that for any i and any Φ ∈ FΣ, we have Φi ≤ u0

i (see Section
4.3); (b) optimality tolerance TOL; and (c) initial feasible solution Φf ∈ FΣ.

1. Initialize zf ←
∑

i>r σi(Σ−Φf ); Nodes← {([0,u0],−∞)}; and zlb ← −∞.

2. While Nodes 6= ∅, remove some node ([`c,uc], zc) ∈ Nodes.

3. Solve (LS`c,uc). Let Φ be an optimal solution with z the optimal objective value; set
zu ←

∑
i>r σi(Σ−Φ).

4. If zu < zf (i.e., a better feasible solution is found), update the best feasible solution
found thus far (Φf ) to be Φ and update the corresponding value (zf ) to zu.

5. If z < zf − TOL (i.e., a TOL–optimal solution has not yet been found), then pick some
i ∈ {1, . . . , p} and some α ∈ (`ci , u

c
i ). Then add two new nodes to Nodes:∏

j<i

[`cj , u
c
j ]× [`ci , α]×

∏
j>i

[`cj , u
c
j ], z

 and

∏
j<i

[`cj , u
c
j ]× [α, uci ]×

∏
j>i

[`cj , u
c
j ], z

 .

6. Update the best lower bound zlb ← min
([`,u],z)∈Nodes

z and return to Step 2.

Global Optimization—State of the Art: We close this section by discussing simi-
larities between the branch-and-bound approach we develop here and existing methods in
nonconvex optimization. Our approach is very similar in spirit to approaches to global op-
timization (Floudas, 1999), and in particular for (nonconvex) quadratic optimization prob-
lems, quadratically-constrained convex optimization problems, and bilinear optimization
problems (Hansen et al., 1993; Bao et al., 2009; Tawarmalani and Sahinidis, 2002b; Tawar-
malani et al., 2013; Costa and Liberti, 2012; Anstreicher and Burer, 2010; Misener and
Floudas, 2012). The primary similarity is that we work within a branch and bound frame-
work using successively better convex lower bounds. However, while global optimization
software for a variety of nonconvex problems with underlying vector variables is generally
well-developed (as evidenced by solvers like BARON, see Sahinidis 2014), this is not the case
for problems with underlying matrix variables and semidefinite constraints.

The presence of semidefinite structure presents several substantial computational chal-
lenges. First and foremost, algorithmic implementations for solving linear SDOs are not
nearly as advanced as those which exist for linear optimization problems. Therefore, each
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subproblem, which is itself a linear SDO, carries a larger computational cost than the usual
corresponding linear program which typically arises in other global optimization problems
with vector variables. Secondly, a critical component of the success of global optimiza-
tion software is the ability to quickly resolve multiple instances of subproblems which have
similar structure. Corresponding methods for SDOs, as solved via interior point methods,
are generally not well-developed. Finally, semidefinite structure complicates the traditional
process of computing convex envelopes. Such computations are critical to the success of
modern global optimization solvers like BARON.

There are a variety of other possible approaches to computing lower bounds to (CFAq).
One such approach is the method of moments (Lasserre, 2009). However, for problems of
the size we are considering, such an approach is likely not computationally feasible, so we
do not make a direct comparison here. There is also recent work in complementarity con-
straints literature (Bai et al., 2016) which connects rank-constrained optimization problems
to copositive optimization (Burer, 2012). In short, such an approach turns (38) into an
equivalent convex problem; despite the transformation, the new problem is not particularly
amenable to computation at this time. For this reason, we do not consider the copositive
optimization approach.

4.2 Properties of (LS`,u)

We now examine properties of (LS`,u), the main subproblem of interest. Observe that it is
a linear SDO problem, and therefore we can consider its dual, namely

(DS`,u)

maximize
q,fu,f`,µ,
σ,M,N,P

(p− r)q − u′fu − Tr(N)− 〈P,Σ− diag(`)〉

s. t. µ+ σ = 1
diag(P) + fu − f ` − µ = 0
Σ− diag(u) + M + N + diag(diag(u− `)µ)− qI = 0
fu,f `,µ,σ ≥ 0
M,N,P < 0.

Observation 1 We now include some remarks about structural properties of (LS`,u) and
its dual (DS`,u).

1. If rank(Σ) = p then the Slater condition (Boyd and Vandenberghe, 2004) holds and
hence there is strong duality, so we can work with (DS`,u) instead of (LS`,u) as an
exact reformulation.

2. There exists an optimal solution to the dual with fu = 0. This is a variable reduction
which is not immediately obvious. Note that fu appears as the multiplier for the
constraints in the primal of the form diag(Φ) ≤ u. To claim that we can set fu = 0
it suffices to show that the corresponding constraints in the primal can be ignored.
Namely, if (W∗,Φ∗) solves (LS`,u) with the constraints Φi ≤ ui ∀i omitted, then the

pair (W∗, Φ̃) is feasible and optimal to (LS`,u) with all the constraints included, where

Φ̃ is defined by

Φ̃i = min{Φ∗i , ui}.
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Hereinafter we set fu = 0 and omit the constraint diag(Φ) ≤ u (with the caveat
that, upon solving a problem and identifying some Φ∗, we must instead work with
min{Φ∗, diag(u)}, taken entrywise).

Solving Subproblems: We briefly detail how to solve (LS`,u). In light of the discussion
in Section 3.2, we choose to apply a first-order method. Observe that we cannot solve
the primal form (LS`,u) within the branch-and-bound framework unless we solve it to
optimality. Therefore, we instead choose to work with its dual (DS`,u). We apply an off-
the-shelf solver SCS (O’Donoghue et al., 2016) to solve (DS`,u) and find reasonably accurate,
feasible solutions for this dual problem, which guarantees that we have a lower bound to
(LS`,u).13 In this way, we maintain the provable optimality properties of Algorithm 2
without needing to solve nodes in the branch-and-bound tree to full optimality.

4.3 Input Parameters

In solving the root node of Algorithm 2, we must begin with some choice of u0 = u. An
obvious first choice for ui is ui = Σii, but one can do better. Let us optimally set ui, defining
it as

ui :=
maximize

x∈R
x

s.t. Σ− xE(i) < 0,
(40)

where E(i) ∈ Rp×p is a matrix with all zeros except E
(i)
ii = 1. These bounds are useful

because if Φ ∈ FΣ, then Φi ≤ ui. Note that problem (40) is a linear SDO for which strong
duality holds. Its dual is precisely

ui =

minimize
M∈Rp×p

〈M,Σ〉

s. t. Mii = 1
M < 0,

(41)

a linear SDO in standard form with a single equality constraint. By a result of (Barvinok,
1995; Pataki, 1998), there exists a rank one solution to (41). This implies that (41) can
actually be solved as a convex quadratic program:

ui =
minimize

m∈Rp
m′Σm

s. t. m2
i = 1.

=
minimize

m
m′Σm

s. t. mi = 1.
(42)

This formulation given in (42) is computationally inexpensive to solve (given a large number
of specialized convex quadratic problem solvers), in contrast to both formulations (40) and
(41).14

13. One notable feature of the ADMM-based approach is that we can extract an approximately feasible
primal solution Φ, which is useful for branching. Note that in Algorithm 2, we can replace the best
incumbent solution if we find a new Φ which has better objective value

∑
i>r σi(Σ − Φ). Because Φ

may not be feasible (i.e., Φ /∈ FΣ), we take care here. Namely, compute t =
∑

i>r λi(Σ − Φ), where
λ1(Σ − Φ) ≥ · · · ≥ λp(Σ − Φ) are the sorted eigenvalues of Σ − Φ. If t < zf , then we perform an
iteration of CG scheme for finding feasible solutions (outlined in Section 3) to find a feasible Φ̄ ∈ FΣ.
We then use this as a possible candidate for replacing the incumbent.

14. In the case when Σ � 0, it is not necessary to use quadratic optimization problems to compute u. In
this case once can apply a straightforward Schur complement argument (Boyd and Vandenberghe, 2004)
to show that u can be computed by solving for inverse of p different (p − 1) × (p − 1) matrices (or
equivalently, by finding the diagonal of the precision matrix Σ−1).
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4.4 Branching

Here we detail two methods for branching (line 5 in Algorithm 2). The problem of branching
is as follows: having solved (LS`,u) for some particular n = [`,u], we must choose some
i ∈ {1, . . . , p} and split the interval [`i, ui] to create two new subproblems. We begin
with a simple branching rule. Given a solution (W∗,Φ∗, e∗) to (LS`,u), compute i ∈
argmaxi |e∗i −W ∗iiΦ∗i | and branch on variable Φi, generating two new subproblems with the
intervals ∏

j<i

[`j , uj ]× [`i,Φ
∗
i ]×

∏
j>i

[`j , uj ] and
∏
j<i

[`j , uj ]× [Φ∗i , ui]×
∏
j>i

[`j , uj ].

Observe that, so long as maxi |e∗i −W ∗iiΦ∗i | > 0, the solution (W∗,Φ∗, e∗) is not optimal for
either of the subproblems created.

We now briefly describe an alternative rule which we employ instead. We again pick the
branching index i as before, but now the two new nodes we generate are∏
j<i

[`j , uj ]×[`i, (1−ε)Φ∗i +ε`i]×
∏
j>i

[`j , uj ] and
∏
j<i

[`j , uj ]×[(1−ε)Φ∗i +ε`i, ui]×
∏
j>i

[`j , uj ],

where ε ∈ [0, 1) is some parameter. For the computational experiments, we set ε = 0.4.

Such an approach, which lowers the location of the branch in the ith interval [`i, ui] from
Φ∗i , serves to improve the objective value from the first node, while hurting the objective
value from the second node (here by objective value, we mean the objective value of the
optimal solution to the two new subproblems). In this way, it spreads out the distance
between the two, and so it is more likely that the first node may have an objective value
that is higher than zf − TOL than before, and hence, this would mean there are fewer nodes
necessary to consider to solve for an additive gap of TOL. While this heuristic explanation is
only partially satisfying, we have observed throughout a variety of numerical experiments
that this rule, even though simple, performs better across a variety of example classes than
the basic branching rule outlined. At the same time, recent work on the theory of branching
rules supports such a heuristic rule (le Bodic and Nemhauser, 2015). In Section 5.4, we give
evidence on the impact of the use of the modified branching rule.

4.5 Weyl’s Method—Pruning and Bound Tightening

In this subsection, we develop another method for lower bounds for the factor analysis
problem. While we use it to supplement our approach detailed throughout Section 4, it is
of interest as a standalone method, particularly for its computational speed and simplicity.
In Section 5.3, we discuss the performance of this approach in both contexts.

The central problem of interest in factor analysis involves the spectrum of a symmetric
matrix (Σ−Φ) which is the difference of two other symmetric matrices (Σ and Φ). From
a linear algebraic perspective, the spectrum of the sum of real symmetric matrices is an
extensively studied problem (Horn and Johnson, 2013; Bhatia, 2007).Therefore, it is natural
to inquire how such results carry over to our setting. We discuss the implications of a well-
known result from this literature, namely Weyl’s inequality (see, e.g., Bhatia 2007):
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Theorem 6 (Weyl’s Inequality) For symmetric matrices A,B ∈ Rp×p with sorted eigen-
values

λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A) and λ1(B) ≥ λ2(B) ≥ · · · ≥ λp(B)

one has for any k ∈ {1, . . . , p} that

λk(A + B) ≥ λk+j(A) + λp−j(B) ∀j = 0, . . . , p− k.

For any vector x ∈ Rp we let {x(i)}
p
i=1 denote sorted {xi}pi=1 with x(1) ≥ x(2) ≥ · · · ≥ x(p).

Using this notation, we arrive at the following theorem.

Theorem 7 For any diagonal matrix Φ̄ one has that

minimize
Φ∈FΣ

∑
i>r

σi(Σ−Φ) ≥ minimize
Φ∈FΣ

(∑
i>r

max
j=0,...,p−i

{
λi+j(Σ− Φ̄) + diag

(
Φ̄−Φ

)
(p−j) , 0

})
.

Proof Apply Weyl’s inequality with A = Σ− diag(Φ̄) and B = Φ̄−Φ, and use the fact
that Φ ∈ FΣ so Σ−Φ < 0.

Weyl’s Method: The new lower bound introduced in Theorem 7 is a nonconvex problem
in general. We begin by discussing one situation in which Theorem 7 provides computa-
tionally tractable (and fast) lower bounds; we deem this Weyl’s method, detailed as follows:

1. Compute bounds ui as in (40), so that for all Φ ∈ FΣ, one has Φi ≤ ui ∀i.

2. For each r ∈ {1, . . . , p}, one can compute a lower bound to (CFA1) (for a given r) of∑
i>r

max{λi(Σ− diag(u)), 0},

by taking Theorem 7 with Φ̄ = diag(u).

As per the above remarks, computing u in Step 1 of Weyl’s method can be carried out
efficiently. Step 2 only relies on computing the eigenvalues of Σ− diag(u). Therefore, this
lower bounding procedure is quite simple to carry out. What is perhaps surprising is that
this simple lower bounding procedure is effective as a standalone method. We describe such
results in Section 5.3. We now turn our attention to how Weyl’s method can be utilized
within the branch and bound tree as described in Algorithm 2.

Pruning: We begin by considering how Weyl’s method can be used for pruning. The
notion of pruning for branch and bound trees is grounded in the theory and practice of
discrete optimization. In short, pruning in the elimination of nodes from the tree without
actually solving them. We make this precise in our context.

Consider some point in the branch and bound process in Algorithm 2, where we have
some collection of nodes, ([`c,uc], zc) ∈ Nodes. Recall that zc is the optimal objective
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value of the parent node of n. Vis-à-vis Weyl’s method, we know a priori, without solving
(LS`c,uc), that

minimize
Φ∈FΣ

`c≤diag(Φ)≤uc

∑
i>r

σi(Σ−Φ) ≥
∑
i>r

max{λi(Σ− diag(uc)), 0}.

Hence, if zf − TOL <
∑

i>r max{λi(Σ − diag(uc)), 0}, where zf is as in Algorithm 2, then
node n can be discarded, i.e., there is no need to actually compute (LS`c,uc) or further
consider this branch. This is because if we were to solve (LS`c,uc), and then branch again,
solving further down this branch to optimality, then the final lower bound obtained would
necessarily be at least as large as the best feasible objective already found (within tolerance
TOL).

In this way, because Weyl’s method is relatively fast, this provides a simple method for
pruning. In the computational results detailed in Section 5.3, we always use Weyl’s method
to discard nodes which are not fruitful to consider.

Bound Tightening: We now turn our attention to another way in which Weyl’s method
can be used to improve the performance of Algorithm 2—bound tightening. In short, bound
tightening is the use of implicit constraints to strengthen bounds obtained for a given node.
We detail this with the same node notation as above. Namely, consider a given node
n = [`c,uc]. Fix some j ∈ {1, . . . , p} and let α ∈ (`cj , u

c
j). If we have that

zf − TOL <
∑
i>r

max{λi(Σ− diag(ũ)), 0},

where ũ is uc with the jth entry replaced by α, then we can replace the node n with the
“tightened” node ñ = [˜̀,uc], where ˜̀ is `c with the jth entry replaced by α.

We consider why this is valid. Suppose that one were to solve (LS`c,uc) and choose to

branch on index j at α. Then one would create two new nodes: [`c, ũ] and [˜̀,uc]. We would
necessarily then prune away the node [`c, ũ] as just described; hence, we can replace [`c,uc]
without loss of generality with [˜̀,uc]. Note that here α ∈ (`cj , u

c
j) and j ∈ {1, . . . , p} were

arbitrary. Hence, for each j, one can choose the largest such αj ∈ (`cj , u
c
j) (if one exists) so

that zf − TOL <
∑

i>k max{λi(Σ− diag(ũ)), 0}, and then replace `c by ˜̀.15

Such a procedure is somewhat expensive (because of its use of repeated eigenvalue
calculations), but can be thought of as “optimal” pruning via Weyl’s method. In our
experience the benefit of bound tightening does not warrant its computational cost when
used at every node in the branch-and-bound tree except in a small number of problems. For
this reason, in the computational results in Section 5.3 we only employ bound tightening
at the root node n = [0,u0].

4.6 Node Selection

In this section, we briefly describe our method of node selection. The problem of node
selection has been considered extensively in discrete optimization and is still an active area
of research. Here we describe a simple node selection strategy.

15. An obvious choice to find such an α is a grid-search-based bisection method. For simplicity we use a
linear search on a grid instead of resorting to the bisection method.
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To be precise, consider some point in Algorithm 2 were we have a certain collection of
nodes, ([`c,uc], zc) ∈ Nodes. The most obvious node selection strategy is to pick the node
n for which zc is smallest among all nodes in Nodes. In this way, the algorithm is likely to
improve the gap zf − zlb at every iteration. Such greedy selection strategies tend to not
perform particularly well in general global optimization problems (see, e.g., Tawarmalani
and Sahinidis, 2002a).

For these reasons, we employ a slightly modified greedy selection strategy which utilizes
Weyl’s method. For a given node n, we also consider its corresponding lower bound wc

obtained from Weyl’s method, namely, wc :=
∑

i>r max{λi(Σ − diag(uc)), 0}. For each
node, we now consider max{zc, wc}. There are two cases to consider:

1. With probability β, we select the node with smallest value of max{zc, wc}.

2. In the remaining scenarios (occurring with probability 1 − β), we choose randomly
between selecting the node with smallest value of zc and the node with smallest value
of wc. To be precise, let Z be the minimum of zc over all nodes and likewise let W be
the minimum of wc over all nodes. Then with (independent) probability β, we choose
the node with worst zc or wc (i.e., with min{zc, wc} = min{Z,W}); with probability
1 − β, if Z < W we choose a node with wc = W , and if Z > W we choose a node
with zc = Z.

In this way, we allow for the algorithm to switch between trying to make progress
towards improving the convex envelope bounds and making progress towards improving the
best of the two bounds (the convex envelope bounds along with the Weyl bounds). We set
β = 0.9 for all computational experiments. It is possible that a more dynamic branching
strategy could perform substantially better; however, the method here has a desirable level
of simplicity.

We close by noting that while this node selection strategy appears näıve, it is not
necessarily so simple. Improved node selection strategies from discrete optimization often
take into account some sort of duality theory. Weyl’s inequality is at its core a result from
duality theory (principally Wielandt’s minimax principle; see Bhatia, 2007), and therefore
our strategy is not as unsophisticated as it might appear on first inspection.

5. Computational experiments

In this section, we perform various computational experiments to study the properties of
our different algorithmic proposals for (CFAq), for q ∈ {1, 2}. Using a variety of sta-
tistical measures, we compare our methods with existing popular approaches for FA, as
implemented in standard R statistical packages psych (Revelle, 2015), nFactors (Raiche
and Magis, 2011), and GPArotation (Bernaards and Jennrich, 2005). We then turn our
attention to certificates of optimality as described in Section 4 for (CFA1).

5.1 Synthetic examples

For our synthetic experiments, we considered distinctly different groups of examples. Classes
A1 and A2 have subspaces of the low-rank common factors which are random and the values
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of Φi are taken to be equally spaced. The underlying matrix corresponding to the common
factors in type A1 is exactly low-rank, while this is not the case in type A2.

Class A1(R/p). We generated a matrix Lp×R := ((Lij)) (with R < p) with Lij
iid∼ N(0, 1).

The unique variances Φ1, . . . ,Φp, are taken to be proportional to p equi-spaced values on

the interval [λR(L′L), λ1(L′L)] such that Φi = φ̄ ·
(
λ1(L′L) + (λR(L′L)− λ1(L′L)) i−1

p

)
, for

1 ≤ i ≤ p. Here φ̄, which controls the ratio of the variances between the uniquenesses and
the common latent factors is chosen such that

∑p
i=1 Φi = Tr(LL′), i.e., the contribution to

the total variance from the common factors matches that from the uniqueness factors. The
covariance matrix is thus given by: Σ = LL′ + Φ.

Class A2(p). Here Lp×p is generated as Lij
iid∼ N(0, 1). We did a full singular value decom-

position on L—let UL denote the set of p (left) singular vectors. We created a positive defi-
nite matrix with exponentially decaying eigenvalues as follows: L̃L̃′ = UL diag(λ1, . . . , λp)U

′
L,

where the eigenvalues were chosen as λi = 0.8i/2, i = 1, . . . , p. We chose the diagonal entries
of Φ (like data Type-A1), as a scalar multiple (φ̄) of a uniformly spaced grid in [λp, λ1] and

φ̄ was chosen such that
∑

i Φi = Tr(L̃L̃′).

In contrast, classes B1, B2, and B3 are qualitatively different from the aforementioned
ones—the subspaces corresponding to the common factors are more structured, and hence
different from the coherence-like assumptions on the eigenvectors which are necessary for
nuclear norm based methods (Saunderson et al., 2012) to work well.
Class B1(R/p). We set Θ = LL′, where Lp×R is given by

Lij =

{
1, i ≤ j
0, i > j.

Class B2(r/R/p). Here we set Θ = LL′, where Lp×R is such that

Lij =


1, i, j = 1, . . . , r
iid∼ N(0, 1), i > r, j = 1, . . . , R
0, i = 1, . . . , r, j > r.

Class B3(r/R/p). Here we define Θ = LL′, where Lp×R is such that

Lij =


1, j = 1, . . . , r, i ≤ j
iid∼ N(0, 1), j > r, i = 1, . . . , R
0, i > j, j = 1, . . . , r.

In all the B classes, we generated Φi
iid∼ abs(N(0, 1)) and the covariance matrix Σ was

taken to be Σ = Θ + αΦ, where α is so that Tr(Θ) = αTr(Φ).

Comparisons with other FA methods

We performed a suite of experiments using Algorithm 1 for the cases q ∈ {1, 2}. We
compared our proposed algorithm with the following popular FA estimation procedures as
described in Section 1.1:
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1. MINRES: minimum residual factor analysis
2. WLS: weighted least squares method with weights being the uniquenesses
3. PA: this is the principal axis factor analysis method
4. MTFA: constrained minimum trace factor analysis—formulation (6)
5. PC: The method of principal component factor analysis
6. MLE: this is the maximum likelihood estimator (MLE)
7. GLS: the generalized least squares method

For MINRES, WLS, GLS, and PA, we used the implementations available in the R

package psych (Revelle, 2015) available from CRAN. For MLE we investigated the methods
factanal from R package stats and the fa function from R package psych. The estimates
obtained by the different MLE implementations were similar in our experiments; therefore,
we report the results obtained from factanal.

For MTFA, we used our own implementation by adapting the ADMM algorithm (Sec-
tion 3.2.2) to solve Problem (6). For the experiments in Section 5.1, we took the convergence
thresholds for Algorithm 1 as TOL = 10−5 and ADMM as TOL × α = 10−9. For the PC

method we followed the description in Bai and Ng (2008) (as described in Section 1.1)—the
Φ estimates were thresholded at zero if they became negative.

Note that all the methods considered in the experiments, apart from MTFA, allow the
user to specify the desired number of factors in the problem. Since standard implementa-
tions of MINRES, WLS and PA require Σ to be a correlation matrix, we standardized all
covariance matrices to correlation matrices at the outset.

5.1.1 Performance measures

We consider the following measures of “goodness of fit” (see Bartholomew et al. 2011 and
references therein) to assess the performances of the different FA estimation procedures.

Estimation error in Φ: We use the following measure to assess the quality of an esti-
mator for Φ:

Error(Φ) :=

p∑
i=1

(Φ̂i − Φi)
2. (43)

The estimation of Φ plays an important role in FA—given a good estimate Φ̂, the r-common
factors can be obtained by a rank-r eigendecomposition on the residual covariance matrix
Σ− Φ̂.

Proportion of variance explained and semi-definiteness of (Σ−Φ): A fundamental
objective in FA lies in understanding how well the r-common factors explain the residual
covariance, i.e., (Σ−Φ̂)—a direct analogue of what is done in PCA, as explained in Section 1.
For a given r, the proportion of variance explained by the r common factors is given by

Explained Variance =
r∑
i=1

λi(Θ̂)/

p∑
i=1

λi(Σ− Φ̂). (44)

As r increases, the explained variance increases to one. This trade-off between r and
“Explained Variance” plays an important role in exploratory FA and in particular the choice
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of r. For the expression (44) to be meaningful, it is desirable to have Σ− Φ̂ � 0. Note that
our framework (CFAq), and in particular MTFA, estimates Φ under a PSD constraint on

Σ −Φ. However, as seen in our experiments (Φ̂, Θ̂) estimated by the remaining methods
MINRES, PA, WLS, GLS, MLE and others often violate the PSD condition on Σ− Φ̂ for
some choices of r, thereby rendering the interpretation of “Explained Variance” troublesome.

For the MTFA method with estimator Θ̂, the measure (44) applies only for the value
of r = rank(Θ̂) and the explained variance is one.

For the methods we have included in our comparisons, we report the values of “Explained
Variance” as delivered by the R-package implementations.

Proximity between Θ̂ and Θ: A relevant measure of the proximity between Θ and its
estimate (Θ̂) is given by

Error(Θ) := ‖Θ̂−Θr‖22/‖Θr‖22, (45)

where Θr is the best rank-r approximation to Θ and can be viewed as the natural “oracle”
counterpart of Θ̂. Note that MTFA does not incorporate any constraint on rank(Θ̂) in its
formulation. Since the estimates obtained by this procedure satisfy Θ̂ = Σ − Φ̂, rank(Θ̂)
may be quite different from r.

Discussion of experimental results. We next discuss our findings from the numerical
experiments for the synthetic datasets.

Table 1 shows the performances of the various methods for different choices of p and
R for class A1. For the problems (CFAq), q ∈ {1, 2}, we present the results of Algorithm
1. (Results obtained by the approach in Appendix B were similar.) In all the examples,
with the exception of MTFA, we set the number of factors to be r = (R− 1), one less than
the rank of the covariance matrix for the common underlying factors; in other words, the
“remaining” rank one component can be considered as noise. For MTFA, the rank of Θ̂
was computed as the number of eigenvalues of Θ̂ larger than 10−5. MTFA and (CFAq), q ∈
{1, 2}, estimate Φ with zero error—significantly better than competing methods. While
MTFA and (CFAq), q ∈ {1, 2}, result in estimates such that Σ− Φ̂ is PSD, other methods,
however, fail to do so; indeed, the discrepancy can often be quite large. MTFA performs
poorly in terms of estimating Θ since the estimated Θ has rank different than r. In terms
of the proportion of variance explained (CFAq) performs significantly better than all other
methods. The notion of “Explained Variance” by MTFA for r = (R − 1) is not applicable
since the rank of the estimated Θ is larger than r.

Figure 1 displays results for type A2. Here we present the results for (CFAq), q ∈
{1, 2}, using Algorithm 1. For all the methods (with the exception of MTFA) we computed
estimates of Θ and Φ for a range of values of r. MTFA and (CFA1) do a perfect job in
estimating Φ and both deliver PSD matrices Σ− Φ̂. MTFA computes solutions (Θ̂) with
a higher numerical rank and with large errors in estimating Θ (for smaller values of r).
Among the four performance measures corresponding to MTFA, Error(Θ) is the only one
that varies with different r values. Each of the other three measures deliver a single value
corresponding to r = rank(Θ̂). Overall, it appears that (CFAq) is significantly better than
all other methods.

Figure 2 shows the results for classes B1, B2, and B3. We present the results for (CFAq)
for q ∈ {1, 2} using Algorithm 1 as before. Figure 2 shows the performance of the different
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Performance Method Used Problem Size
measure (CFA1) (CFA2) MTFA MINRES WLS PA PC MLE (R/p)

Error(Φ) 0.0 0.0 0.0 699.5 700.1 700.0 639.9 699.6

3/200
Explained Var. 0.6889 0.6889 - 0.2898 0.2898 0.2898 0.2956 0.2898

λmin(Σ− Φ̂) 0.0 0.0 0.0 -0.6086 -0.6194 -0.6195 -0.6140 -0.6034
Error(Θ) 0.0 0.0 689.68 0.1023 0.1079 0.1146 0.7071 0.1111

Error(Φ) 0.0 0.0 0.0 197.18 197.01 196.98 139.60 197.18

5/200
Explained Var. 0.8473 0.8473 - 0.3813 0.3813 0.3814 0.3925 0.3813

λmin(Σ− Φ̂) 0.0 0.0 0.0 -0.4920 -0.5071 -0.5081 -0.4983 -0.4919
Error(Θ) 0.0 0.0 190.26 0.0726 0.0802 0.0817 1.1638 0.0725

Error(Φ) 0.0 0.0 0.0 39.85 39.18 39.28 2.47 40.04

10/200
Explained Var. 0.9371 0.9371 - 0.4449 0.4452 0.4452 0.4686 0.4449

λmin(Σ− Φ̂) 0.0 0.0 0.0 -0.2040 -0.2289 -0.2329 -0.2060 -0.2037
Error(Θ) 0.0 0.0 35.94 0.0531 0.0399 0.0419 2.47 0.0560

Error(Φ) 0.0 0.0 0.0 3838 3859 3858 3715 3870

2/500
Explained Var. 0.7103 0.7103 - 0.3036 0.3033 0.3033 0.3056 0.3031

λmin(Σ− Φ̂) 0.0 0.0 0.0 -0.7014 -0.7126 -0.7125 -0.7121 -0.7168
Error(Θ) 0.0 0.0 3835.6 0.0726 0.0770 0.0766 0.5897 0.1134

Error(Φ) 0.0 0.0 0.0 1482.9 1479.1 1478.9 1312.9 1485.1

5/500
Explained Var. 0.8311 0.8311 - 0.3753 0.3754 0.3754 0.3798 0.3752

λmin(Σ− Φ̂) 0.0 0.0 0.0 -0.5332 -0.5433 -0.5445 -0.5423 -0.5379
Error(Θ) 0.0 0.0 1459.5 0.1176 0.0752 0.0746 1.1358 0.1301

Error(Φ) 0.0 0.0 0.0 301.94 301.08 301.04 160.29 302.1

10/500
Explained Var. 0.9287 0.9287 - 0.4443 0.4444 0.4444 0.4538 0.4443

λmin(Σ− Φ̂) 0.0 0.0 0.0 -0.3290 -0.3280 -0.3281 -0.3210 -0.3302
Error(Θ) 0.0 0.0 291.44 0.0508 0.0415 0.0412 2.3945 0.0516

Error(Φ) 0.0 0.0 0.0 19123 19088 19090 18770 19120

2/1000
Explained Var. 0.6767 0.6767 - 0.2885 0.2886 0.2886 0.2898 0.2885

λmin(Σ− Φ̂) 0.0 0.0 0.0 -0.6925 -0.7335 -0.7418 -0.7422 -0.6780
Error(Θ) 0.0 0.0 19037 50.76 0.3571 0.0984 0.8092 18.5930

Error(Φ) 0.0 0.0 0.0 6872 6862 6861 6497 6876

5/1000
Explained Var. 0.8183 0.8183 - 0.3716 0.3717 0.3717 0.3739 0.3716

λmin(Σ− Φ̂) 0.0 0.0 0.0 -0.6202 -0.6785 -0.6797 -0.6788 -0.6209
Error(Θ) 0.0 0.0 6818.1 0.1706 0.0776 0.0780 1.1377 0.1696

Error(Φ) 0.0 0.0 0.0 1682 1681 1681 1311 1682

10/1000
Explained Var. 0.9147 0.9147 - 0.4360 0.4360 0.4360 0.4408 0.4360

λmin(Σ− Φ̂) 0.0 0.0 0.0 -0.2643 -0.2675 -0.2676 -0.2631 -0.2643
Error(Θ) 0.0 0.0 1654.3 0.0665 0.0568 0.0570 2.4202 0.0665

Table 1: Comparative performances of the various FA methods for data of type A1, for different
choices of R and p. In all the above methods (apart from MTFA) r was taken to be (R− 1). In all

the cases rank(Θ̂) obtained by MTFA is seen to be R. The “-” symbol implies that the notion of
explained variance is not meaningful for MTFA for r = R− 1. No method in Category (B) satisfies
Σ − Φ � 0. Methods proposed in this paper seem to significantly outperform their competitors,
across the different performance measures.
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methods in terms of four different metrics: error in Φ estimation, proportion of variance
explained, violation of the PSD constraint on Σ − Φ, and error in Θ estimation. For
the case of B1, we see that the proportion of explained variance for (CFAq) reaches one
at a rank smaller than that of MTFA—this shows that the nonconvex criterion (CFAq)
provides smaller estimates of the rank than its convex relaxation MTFA when one seeks
a model that explains the full proportion of residual variance. This result is qualitatively
different from the behavior seen for A1 and A2 where the benefit of (CFAq) over MTFA

was mainly due to its flexibility to control the rank of Θ. Algorithms in Category (A)
do an excellent job in estimating Φ. All other competing methods perform poorly in
estimating Φ for small/moderate values of r. We observe that none of the methods apart
from (CFAq) and MTFA lead to PSD estimates of Σ − Φ̂ (unless r becomes sufficiently
large which corresponds to a model with a saturated fit). In terms of the proportion of
variance explained, our proposal performs much better than the competing methods. We
see that the error in Θ estimation incurred by (CFAq), increases marginally as soon as the
rank r becomes larger than a certain value for B1. Note that around the same values of
r, the proportion of explained variance reaches one in both these cases, thereby suggesting
that this is possibly not a region of statistical interest. In summary, Figure 2 suggests that
(CFAq) performs very well compared to all its competitors.

Summary: All methods of Category (B) (see Section 1.2) used in the experimental com-
parisons perform worse than Category (A) in terms of measures Error(Φ), Error(Θ) and
Explained Variance for small/moderate values of r. They also lead to indefinite estimates
of Σ− Φ̂. MTFA performs well in estimating Φ but fails in estimating Θ mainly due to the
lack in flexibility of imposing a rank constraint; in some cases the trace heuristic falls short
of doing a good job in approximating the rank function when compared to its nonconvex
counterpart (CFAq). The estimation methods proposed herein have a significant edge over
existing methods in producing high quality solutions across various performance metrics.

5.2 Real data examples

This section describes the performance of different FA methods on some real-world bench-
mark datasets popularly used in the context of FA. These datasets can be found in the R

libraries datasets (R Core Team, 2014), psych (Revelle, 2015), and FactoMineR (Husson
et al., 2015) and are as follows:

• The bfi data set has 2800 observations on 28 variables (25 personality self-reported
items and 3 demographic variables).

• The neo data set has 1000 measurements for p = 30 dimensions.

• The Harman data set is a correlation matrix of 24 psychological tests given to 145
seventh- and eighth-grade children.

• The geomorphology data set is a collection of geomorphological data collected across
p = 10 variables and 75 observations. (The geomorphology data set originally has
p = 11, but we remove the one categorical feature, leaving p = 10.)
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Figure 1: Performance of various FA methods for examples from class A2(p = 200) as a function of

the number of factors. The y-axis label “Minimum Eigenvalue” refers to λmin(Σ− Φ̂). We present

the results of (CFA1), as obtained via Algorithm 1—the results of (CFA2) were similar, and hence

omitted from the plot. Our methods seems to perform better than all the other competitors. For

large values of r, as the fits saturate, the methods become similar. The methods (as available from

the R package implementations) that experienced convergence difficulties do not appear in the plot.

• The JO data set records athletic performance in Olympic events, and involves 24
observations with p = 58. This example is distinctive because the corresponding
correlation matrix Σ is not full rank (having more variables than observations).

We present the results in Figure 3. We also experimented with other methods—such as WLS

and GLS—but the results were similar to MINRES and hence have not been shown in the
figure. For the real examples, most of the performance measures described in Section 5.1.1
do not apply16; however, the notion of explained variance (44) does apply. We used this
metric to compare the performance of different competing estimation procedures. We ob-
serve that solutions delivered by Category (B) explain the maximum amount of residual
variance for a given rank r, which is indeed desirable, especially in the light of its analogy
with PCA on the residual covariance matrix Σ−Φ.

16. Understanding performance of FA methods on real data is difficult because it is an unsupervised problem.
However, we can understand the performances of different methods by drawing parallels with PCA in
terms of the proportion of variance explained of the matrix Σ−Φ—see our discussion in Section 1.
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Figure 2: Performance of different methods for instances of B1(30/100), B2(5/10/100), and

B3(5/10/100). We see that (CFA1) exhibits very good performance across all instances, signifi-

cantly outperforming the competing methods (the results of (CFA2) were similar).
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Figure 3: Figure showing proportion of variance explained by different methods for real-data exam-

ples. We see that in terms of the proportion of explained variance, (CFA1) delivers the largest values

for different values of r, which is indeed desirable. (CFA1) also shows nice flexibility in delivering

different models with varying r, in contrast to MTFA which delivers one model with proportion of

variance explained equal to one. The results of (CFA2) were found to be similar to (CFA1).

5.3 Certificates of Optimality via Algorithm 2

We now turn our attention to certificates of optimality using Algorithm 2. Computational
results of Algorithm 2 for a variety of problem sizes across all six classes can be found
in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11. In general, we provide results for p ranging
between 10 and 4000. Parametric choices are outlined in depth in Table 2.17 We always
initialize Algorithm 2 with an initial feasible solution as found via Algorithm 1 so that
we can understand if the estimators found via the CG-based approach are indeed optimal.
In particular, if the best feasible objective value does not change throughout the branch-
and-bound algorithm, then the initial estimator was indeed optimal (within the numerical
tolerance).

Root Node Gap: Let us first consider the gap at the root node. In classes A1, B1, B2,
and B3, we see that the Weyl bound at the root node often provides a better bound than
the one given by using convex envelopes. Indeed, the bound provided by Weyl’s method
can in many instances certify optimality (up to numerical tolerance) at the root node. For
example, this is the case in many instances of classes A1 and half of the instances in B3.
Given that Weyl’s method is computationally inexpensive (only requiring the computation
of p convex quadratic optimization problems and an eigenvalue decomposition), this suggests
that Weyl’s inequality as used within the context of factor analysis is particularly fruitful.

In contrast, in class A2 and the real examples, we see that the convex envelope bound
tends to perform better. Because of the structure of Weyl’s inequality, Weyl’s method is
well-suited for correlation matrices Σ with very quickly decaying eigenvalues. Examples in

17. All computational experiments are performed in a shared cluster computing environment with highly
variable demand, and therefore runtimes are not necessarily a reliable measure of problem complexity;
hence, the number of nodes considered is always displayed. Further, Algorithm 2 is highly paralleliz-
able, like many branch-and-bound algorithms; however, our implementation is serial. Therefore, with
improvements in code design, it is very likely that runtimes can be substantially improved beyond those
shown here.
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Root node Terminal node
Problem size

Instance
Upper CE Weyl Upper Lower

Nodes Time (s)
(R/p) bound LB LB bound bound

2/10
1 1.54 1.44 1.43 1.54 1.44 1 0.14
2 1.50 1.40 1.40 1.50 1.40 1 0.38
3 1.44 1.25 1.32 1.44 1.35 5 0.20

3/10
1 0.88 0.49 0.70 0.88 0.78 78 4.08
2 0.49 0.25 0.39 0.49 0.39 1 1.27
3 0.52 0.17 0.42 0.52 0.42 14 0.34

5/10
1 0.43 −0.90 0.10 0.43 0.33 28163 19432.70
2 0.06 −0.75 0.00 0.06 0.00 1 0.20
3 0.17 −0.98 0.00 0.17 0.07 3213 380.66

2/20
1 3.99 3.91 3.94 3.99 3.94 1 0.19
2 4.64 4.58 4.60 4.64 4.60 1 2.07
3 3.34 3.26 3.28 3.34 3.28 1 0.66

3/20
1 2.33 2.06 2.24 2.33 2.33 1 0.21
2 2.55 2.38 2.49 2.55 2.49 1 6.62
3 2.04 1.86 1.97 2.04 1.97 1 3.51

5/20
1 0.61 −0.07 0.49 0.61 0.51 626 75.98
2 0.50 −0.01 0.40 0.50 0.40 41 2.88
3 0.92 0.18 0.81 0.92 0.82 267 24.81

Table 2: Computational results for Algorithm 2 for class C = A1(R/p). All computations are
performed in julia using SDO solvers MOSEK (for primal feasible solutions) and SCS (for dual fea-
sible solutions within tolerance 10−3). Computation time does not include preprocessing (such as
computation of u as in (40) and finding an initial incumbent feasible solution Φf as computed via
the conditional gradient algorithm in Section 3). We always use default tolerance TOL = 0.1 for algo-
rithm termination. Parameters for branching, pruning, node selection, etc., are detailed throughout
Section 4. For each problem size, we run three instances (the instance number is the random seed
provided to julia). Upper bounds denote zf , which is the best feasible solution found thus far
(either at the root node or at algorithm termination). At the root node, we display two lower
bounds: the lower bound arising from convex envelopes (denoted “CE LB”) and the one arising
from the Weyl bound (denoted “Weyl LB”). Note that for lower bound at the termination node, we
mean the worst bound max{zc, wc} (see Section 4.6; zc is from the convex envelope approach, while
wc comes from Weyl’s method). “Nodes” indicates the number of nodes considered in the course
of execution, while “Time (s)” denotes the runtime (in seconds). We set r∗, the rank used within
Algorithm 2, to r∗ = R − 1, where R is the generative rank displayed. All results displayed to two
decimals. Computations run on high-demand, shared cluster computing environment with variable
architectures. Runtime is capped at 400000s (approximately 5 days), and any instance which is still
running at that time is marked with an asterisk next to its runtime.
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Root node Terminal node
Problem size

Instance
Upper CE Weyl Upper Lower

Nodes Time (s)
(R/p) bound LB LB bound bound

3/50
1 7.16 7.09 7.14 7.16 7.14 1 18.66
2 6.74 6.66 6.71 6.74 6.71 1 13.19
3 6.78 6.74 6.77 6.78 6.77 1 33.28

5/50
1 3.04 2.86 3.01 3.04 3.01 1 19.13
2 3.32 3.12 3.29 3.32 3.29 1 7.33
3 3.70 3.56 3.67 3.70 3.67 1 52.53

10/50
1 0.88 −0.15 0.81 0.88 0.81 1 6.22
2 1.20 0.08 1.12 1.20 1.12 1 17.41
3 1.14 −0.02 1.07 1.14 1.07 1 8.88

3/100
1 13.72 13.69 13.72 13.72 13.72 1 125.17
2 14.07 14.03 14.06 14.07 14.06 1 63.25
3 14.67 14.64 14.66 14.67 14.66 1 28.36

5/100
1 8.54 8.46 8.53 8.54 8.53 1 117.71
2 7.16 7.04 7.14 7.16 7.14 1 70.09
3 7.07 6.94 7.06 7.07 7.06 1 78.60

10/100
1 2.62 2.10 2.58 2.62 2.58 1 36.91
2 2.81 2.38 2.78 2.81 2.78 1 9.25
3 3.16 2.64 3.12 3.16 3.12 1 49.04

Table 3: Computational results for larger examples from class C = A1(R/p). Same parameters as
in Table 2 but with larger problem instances. Again we set r∗ = R− 1.

these two classes do not have such a spectrum, and indeed Weyl’s method does not provide
the best root node bound.18 Because neither Weyl’s method nor the convex envelope
bound strictly dominate one another at the root node across all examples, our approach
incorporating both can leverage the advantages of each.

Observe that the root node gap (either in terms of the absolute difference between
the initial feasible solution found and the better of the convex envelope bound and the
Weyl bound) tends to be smaller when r∗ is much smaller than p. This suggests that the
approach we take is well-suited to certify optimality of particularly low-rank decompositions
in noisy factor analysis settings. We see that this phenomenon is true across all classes.
The numerical results suggest that corresponding theoretical guarantees for Weyl’s method
are potentially of interest in their own right and warrant further consideration.

Finally, we remark that if the true convex envelope of the objective over the set of
semidefinite constraints was taken, then the convex envelope objective would always be
non-negative. However, because we have taken the convex envelope of the objective over
the polyhedral constraints only, this is not the case.

Performance at Termination: It is particularly encouraging that the initial feasible
solutions provided via Algorithm 1 remain the best feasible solution throughout the exe-
cution of Algorithm 2 for all but three problem instances. (Of course, this need not be

18. However, it is worth remarking that Weyl’s method still provides lower bounds on the rank of solutions
to the noiseless factor analysis problem. Hence, even in settings where Weyl’s method is not necessarily
well-suited for proving optimality for the noisy factor analysis problem, it can still be applied successfully
to lower bound rank for noiseless factor analysis.
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Root node Terminal node
Problem size

Instance
r∗ Upper CE Weyl Upper Lower

Nodes Time (s)
(p) used bound LB LB bound bound

10
1

2
0.98 −0.29 0.26 0.96 0.86 1955 91.99

2 0.85 −0.28 0.29 0.85 0.75 736 37.70
3 0.89 −0.29 0.23 0.89 0.79 1749 53.30

10
1

3
0.53 −0.43 0.13 0.53 0.43 3822 409.68

2 0.58 −0.45 0.15 0.58 0.48 8813 1623.38
3 0.64 −0.44 0.10 0.59 0.49 13061 1671.61

20
1

2
5.13 4.14 2.13 5.13 5.03 29724 36857.46

2 4.68 3.44 2.00 4.68 4.58 28707 35441.37
3 4.83 3.67 2.00 4.83 4.73 17992 11059.55

20
1

3
4.26 2.68 1.55 4.26 4.05 86687 400002.3*

2 3.88 2.00 1.46 3.88 3.71 132721 400003.7*
3 4.03 2.25 1.48 4.03 3.84 100042 400002.1*

50
1

3
17.83 16.54 11.49 17.83 17.44 35228 400002.5*

2 18.57 17.34 12.19 18.57 18.20 34006 400007.1*
3 18.21 17.06 11.96 18.21 17.86 35874 400004.9*

100
1

3
38.65 37.50 33.08 38.65 38.18 20282 400015.2*

2 38.84 37.66 33.25 38.84 38.37 17306 400013.7*
3 39.02 37.86 33.67 39.02 38.58 19889 400004.9*

100
1

5
30.98 29.05 25.69 30.98 29.91 16653 400005.6*

2 31.37 29.39 26.07 31.37 30.32 26442 400021.4*
3 31.20 29.24 26.13 31.20 30.15 19445 400043.4*

Table 4: Computational results for class C = A2(p). All parameters as per Table 2. Here we show
the behavior across a variety of choices of the parameter r∗. Recall that the class A2 is generated
by a common variance component with high rank and exponentially decaying eigenvalues.

universally true.) This is an important observation to make because without a provable
optimality scheme such as the one we consider here, it is difficult to quantify the perfor-
mance of heuristic upper bound methods. As we demonstrate here, despite the only local
guarantees of solutions obtained via a conditional gradient scheme, they tend to perform
quite well in the setting of factor analysis. Indeed, even in the three examples where the
best feasible solution is improved, the improved solution is found very early in the branching
process.

Across the different example classes, we see that in general the gap tends to decrease
more when r∗ is small relative to p and p is smaller. To appropriately contextualize and
appreciate the number of nodes solved for a problem with p = 100 on the timescale of
100s, with state-of-the-art implementations of interior point methods, solving a single node
in the branch and bound tree can take on the order of 40s (for the specifically structured
problems of interest and on the same machine). In other words, if one were to näıvely use
interior point methods, it would only be possible to solve approximately three nodes during
a 100s time limit. In contrast, by using a first-order method approach which facilitates
warm starts, we are able to solve hundreds of nodes in the same amount of time.

We see that Algorithm 2 performs particularly well for classes A1 (Tables 2 and 3) and
B1 (Table 5), for problems of reasonable size with relatively small underlying ranks. This
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Root node Terminal node
Problem size

Instance
r∗ Upper CE Weyl Upper Lower

Nodes Time (s)
(r/p) chosen bound LB LB bound bound

4/10
1 1 0.25 0.06 0.11 0.25 0.20 24 0.66
2 1 0.17 −0.04 0.04 0.17 0.12 17 0.50
3 1 0.16 −0.08 0.00 0.16 0.11 26 0.16

6/10
1 2 0.09 −0.27 0.00 0.09 0.04 77 0.62
2 2 0.07 −0.36 0.00 0.07 0.02 118 0.75
3 2 0.07 −0.36 0.00 0.07 0.02 125 3.79

10/10
1 3 0.10 −0.46 0.00 0.10 0.05 2162 166.44
2 3 0.10 −0.62 0.00 0.10 0.05 3282 406.82
3 4 0.06 −0.49 0.00 0.04 0.00 122 11.69

4/20
1 1 0.26 0.10 0.13 0.26 0.21 21 0.17
2 1 0.19 0.01 0.07 0.19 0.14 15 0.40
3 1 0.19 −0.04 0.04 0.19 0.14 26 0.59

6/20
1 2 0.10 −0.24 0.01 0.10 0.05 73 1.47
2 2 0.08 −0.32 0.00 0.08 0.03 103 2.82
3 2 0.08 −0.30 0.00 0.08 0.03 96 1.64

10/20
1 3 0.13 −0.44 0.00 0.13 0.08 2602 113.82
2 3 0.12 −0.59 0.00 0.12 0.07 3971 188.93
3 3 0.15 −0.45 0.01 0.15 0.10 3910 531.04

6/50
1 2 0.11 −0.15 0.04 0.11 0.06 50 0.66
2 2 0.10 −0.18 0.01 0.10 0.05 61 1.95
3 2 0.10 −0.20 0.01 0.10 0.05 64 0.58

10/50
1 3 0.17 −0.35 0.03 0.17 0.12 2283 333.62
2 3 0.17 −0.46 0.02 0.17 0.12 4104 544.71
3 3 0.19 −0.36 0.03 0.19 0.14 4362 620.61

6/100
1 2 0.12 −0.07 0.05 0.12 0.05 1 0.71
2 2 0.11 −0.09 0.04 0.11 0.07 12 0.82
3 2 0.11 −0.12 0.03 0.11 0.06 30 0.46

10/100
1 3 0.19 −0.22 0.06 0.19 0.14 1535 237.19
2 3 0.19 −0.28 0.05 0.19 0.14 2625 383.27
3 3 0.20 −0.26 0.05 0.20 0.15 2829 355.08

Table 5: Computational results for class C = B1(R/p). We choose r∗ during computation as the
largest r such that the CG method of Section 3 is strictly positive (up to additive tolerance 0.05; we
use a smaller value here because the objective values are smaller across this class). For this class,
examples can be preprocessed because Σ ∼ B1(R/p) has a block of size R × R in the upper left,
with all other entries set to zero except the diagonal. Hence, it suffices to perform factor analysis
with the truncated matrix Σ1:R,1:R.

is highly encouraging. Class A1 forms a set of prototypical examples for which theoretical
recovery guarantees perform well; in stark contrast, problems such as those in B1 which have
highly structured underlying factors tend to not satisfy the requirements of such recovery
guarantees. Indeed, if Σ ∼ B1(R/p), then there generally appears to be a rank R/2 matrix
Θ < 0 so that Σ −Θ is positive semidefinite and diagonal. In such a problem, for r∗ on
the order of R/2− 1, we provide nearly optimal solutions within a reasonable time frame.

Further, we note that similar results to those obtained for classes A1 and B1 are obtained
for the other classes and are detailed in Tables 4 (class A2), 6 (class B2), 7 (class B3), and
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Root node Terminal node
Problem size

Instance
r∗ Upper CE Weyl Upper Lower

Nodes Time (s)
(r/R/p) chosen bound LB LB bound bound

2/5/20
1 4 1.15 0.4 1.03 1.15 1.05 517 146.72
2 4 1.08 0.50 0.97 1.08 0.98 366 60.56
3 4 0.89 0.29 0.79 0.89 0.79 1 0.56

3/5/20
1 4 1.24 0.46 1.11 1.24 1.14 933 232.74
2 4 0.99 0.55 0.92 0.99 0.92 1 0.87
3 4 0.72 0.08 0.62 0.72 0.62 123 20.16

2/5/100
1 4 7.54 7.46 7.53 7.54 7.53 1 84.20
2 4 6.45 6.34 6.44 6.45 6.44 1 119.62
3 4 7.20 7.09 7.18 7.20 7.18 1 97.17

3/5/100
1 4 8.40 8.32 8.39 8.40 8.39 1 135.73
2 4 5.79 5.70 5.78 5.79 5.78 1 38.19
3 4 7.58 7.47 7.57 7.58 7.57 1 73.51

2/10/100
1 9 3.56 3.11 3.53 3.56 3.53 1 71.10
2 9 3.00 2.61 2.97 3.00 2.97 1 85.47
3 9 2.58 2.14 2.55 2.58 2.55 1 22.99

3/10/100
1 9 3.23 2.80 3.20 3.23 3.20 1 50.63
2 9 2.94 2.56 2.91 2.94 2.91 1 51.99
3 9 2.57 2.12 2.54 2.57 2.54 1 72.45

Table 6: Computational results for class B2(r/R/p). Parameters as set in Table 2. Here r∗ is
chosen during computation as largest k such that the CG method of Section 3 is strictly positive
(up to 0.1). Here r∗ = R− 1 ends up being an appropriate choice.

8 and 9. In a class such as A2, which is generated as a high rank matrix (with decaying
spectrum) with added individual variances, theoretical recovery guarantees do not generally
apply, so again it is encouraging to see that our approach still makes significant progress
towards proving optimality. Further, as shown in Table 11, for a variety of problems with
p on the order of 1000 or 4000, solutions can be found in seconds and optimality can be
certified within minutes via Weyl bounds, with no need for convex envelope bounds as
computed via Algorithm 2, so long as the rank r∗ is sufficiently small (for classes A1, B2,
and B3 on the order of hundreds, and for A2 on the order of tens). This strongly supports
the value of such an eigenvalue-based approach. When computing lower bounds solely via
Weyl’s method, the only necessary computations are solving quadratic programs (to find u
as in Section 4.3) and an eigenvalue decomposition. As Table 11 suggests, for sufficiently
small rank, one can still quickly find certifiably optimal solutions even for very large-scale
factor analysis problems.

A particularly interesting example that stands apart from the rest is JO from the set
of real examples. In particular, the correlation matrix for this example is not full rank
(as there are fewer observations than variables). As displayed in Table 10, solutions found
via conditional gradient methods are certified to be optimal at the root node. Indeed, the
initial u0 as in Section 4.3 can be quickly verified to be u0 = 0 for this example, i.e., factor
analysis is only possible with no individual variances. Hence, Algorithm 2 terminates at
the root node without needing any branching.
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Root node Terminal node
Problem size

Instance
r∗ Upper CE Weyl Upper Lower

Nodes Time (s)
(r/R/p) chosen bound LB LB bound bound

2/5/20
1 3 0.30 −0.30 0.13 0.30 0.20 777 219.75
2 3 0.22 −0.11 0.12 0.22 0.12 1 2.61
3 3 0.19 −0.17 0.10 0.19 0.10 1 1.57

3/5/20
1 2 1.00 0.62 0.82 1.00 0.90 217 48.43
2 2 0.95 0.47 0.74 0.95 0.85 305 26.14
3 2 0.45 0.06 0.30 0.45 0.36 98 12.31

2/5/100
1 3 0.55 0.24 0.40 0.55 0.45 7099 47651.57
2 3 0.28 −0.07 0.17 0.28 0.18 266 1431.88
3 3 0.19 −0.07 0.11 0.19 0.11 1 574.61

3/5/100
1 2 1.03 0.70 0.81 1.03 0.93 4906 34514.69
2 2 0.90 0.66 0.78 0.90 0.80 95 596.96
3 2 0.55 0.39 0.47 0.55 0.47 1 1787.14

2/10/100
1 8 0.12 −0.58 0.05 0.12 0.05 1 77.38
2 8 0.11 −0.53 0.05 0.11 0.05 1 41.24
3 8 0.10 −0.43 0.05 0.10 0.05 1 110.17

3/10/100
1 6 0.33 −0.73 0.20 0.33 0.22 27770 400000.0*
2 7 0.25 −0.43 0.17 0.25 0.17 1 128.63
3 7 0.31 −0.28 0.24 0.31 0.24 1 213.72

Table 7: Computational results for class B3(r/R/p). Parameters as set in Table 2. As in Tables
5 and 6, here r∗ is chosen during computation as largest r such that the CG method of Section 3
produces a feasible solution with strictly positive objective (up to 0.1).

Root node Terminal node
r∗ Upper CE Weyl Upper Lower

Nodes Time (s)
used bound LB LB bound bound

1 4.06 3.78 2.53 4.06 3.96 44 0.64
2 2.64 2.04 1.42 2.64 2.54 1885 142.06
3 1.56 0.62 0.61 1.56 1.46 11056 2458.23
4 0.88 −0.33 0.28 0.88 0.78 66877 60612.61
5 0.36 −0.88 0.0 0.36 0.25 155759 400012.4*

Table 8: Computational results for the geomorphology example (p = 10). Parameters as set in
Table 2. Here we display results for the choices of r∗ ∈ {1, 2, 3, 4, 5} (for r∗ > 5, the upper bound is
below the numerical tolerance, so we do not include those).

Root node Terminal node
r∗ Upper CE Weyl Upper Lower

Nodes Time (s)
used bound LB LB bound bound

1 9.88 9.64 5.89 9.88 9.78 158 30.13
2 7.98 7.54 4.22 7.98 7.88 31710 49837.17
3 6.53 5.85 3.01 6.53 6.35 81935 400003.8*

Table 9: Computational results for the Harman example (p = 24). Parameters as set in Table 2.
Here we display results for the choices of r∗ ∈ {1, 2, 3}.
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r∗
Optimal Time

value (s)
1 51.85 5.59
2 46.30 6.86
3 41.29 6.08
4 36.54 6.08
5 32.36 1.21
6 28.72 7.83
7 25.39 1.13
8 22.10 3.87
9 19.20 4.97
10 16.63 4.17
11 14.30 7.87

r∗
Optimal Time

value (s)
12 12.52 3.37
13 10.81 2.97
14 9.25 1.07
15 7.78 6.21
16 6.44 5.40
17 5.15 0.91
18 3.98 8.50
19 2.84 5.33
20 1.87 2.15
21 1.07 2.13
22 0.48 1.65

Table 10: Computational results for the example JO (p = 58). Parameters as set in Table 2. Here
we display results for the choices of r∗ ∈ {1, 2, . . . , 22} (for r∗ > 22, the upper bound is below the
numerical tolerance, so we do not include those). For all choices of r∗, the optimal solution is found
and certified to be optimal at the root node, and therefore we do not display any information other
than the optimal values.

Finally, we note that all synthetic examples we have considered have equal proportions
of common and individual variances (although, of course, this is not exploited by our ap-
proach as this information is not a priori possible to specify without additional contextual
information). If one modifies the classes so that the proportion of the common variances is
higher than the proportion of individual variances (in the generative example), then Algo-
rithm 2 is able to deliver better bounds on a smaller time scale. (Results are not included
here.) This is not particularly surprising because the branch-and-bound approach we take
essentially hinges on how well the products WiiΦi can be approximated. When there is
underlying factor structure with a lower proportion of individual variances, the scale of
WiiΦi is smaller and hence these products are easier to approximate well.

5.4 Additional Considerations

We now turn our attention to assessing the benefits of various algorithmic modifications
as presented in Section 4. We illustrate the impact of these by focusing on four repre-
sentative examples from across the classes: A1(3/10), B1(6/50), B3(3/5/20), and G :=
geomorphology.

Performance of Branching Strategy: We begin by considering the impact of our
branching strategy as developed in Section 4.4. The results across the four examples are
shown in Table 12. Recall that ε ∈ [0, 1) controls the extent of deviation from the canonical
branching location, with ε = 0 corresponding to no deviation. Across all examples, we
see that the number of nodes considered to prove optimality is approximately convex in
ε ∈ [0, 0.5]. In particular, for all examples, the “optimal” choice of ε is not the canonical
choice of ε = 0. This contrast is stark for the examples B3(3/5/20) and G. Indeed, for
these two examples, the number of nodes considered when ε = 0 is over five times larger
than for any ε ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.
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Example r∗
Upper Lower
bound bound

A1(100/1000)

10 460.35 457.46
30 322.35 313.62
50 198.70 197.13
70 103.72 102.78
90 28.65 28.34

A2(1000)

10 184.22 183.18
20 61.24 60.34
30 20.25 19.50
40 6.63 6.02
50 2.17 1.71

B2(10/90/1000)

20 379.02 377.23
40 236.10 234.83
60 122.08 121.33
80 34.49 34.24

B2(20/90/1000)

20 378.37 376.64
40 235.16 233.94
60 121.69 120.96
80 34.33 34.09

B3(10/50/1000)

10 384.40 384.04
20 233.25 232.97
30 105.68 105.49
40 0.69 0.60

B3(20/150/1000)

20 426.31 422.13
45 285.56 282.33
70 174.00 171.70
95 86.54 85.15
120 20.30 19.80

Example r∗
Upper Lower
bound bound

A1(360/4000)

100 1334.40 1327.60
150 991.64 986.15
200 693.02 688.87
250 434.64 431.80
300 213.29 211.75
350 30.75 30.50

A2(4000)

10 733.41 733.09
20 244.13 243.85
30 79.94 79.68
40 26.17 25.96
50 8.57 8.39
60 2.80 2.66
70 0.90 0.79

B2(80/360/4000)

100 1360.1 1354.04
150 1008.90 1004.04
200 703.78 700.21
250 440.56 438.16
300 215.87 214.62
350 31.02 30.91

B3(120/360/4000)

100 1081.20 1078.74
150 630.25 628.54
200 253.50 252.50
240 7.89 7.46

Table 11: Computational results across several classes for larger scale instances with p ∈
{1000, 4000}. Here for a given example, the random seed is set as 1. Results are displayed across a
variety of choices of rank r∗. Class B1 is not shown because of the reduction noted in Table 5 (which
reduces this class to a much smaller-dimensional class, and hence it is not truly large scale). The
“Upper bound” denotes the upper bound found by the conditional gradient method, while “Lower
bound” denotes the Weyl bound at the root node (no convex envelope bounds via Algorithm 2 are
shown here because of the large nature of the SDO-based convex envelope lower bounds which are
prohibitive to solve for problems of this size). These instances are completed in MATLAB because of
its superior support (over julia) for solving large-scale quadratic optimization problems, which is
the only computation necessary for computing Weyl bounds.
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Example r∗
Nodes considered for ε =

0.0 0.1 0.2 0.3 0.4 0.5
A1(3/10) 2 103 72 59 62 78 101
B1(6/50) 2 39 33 29 40 50 53
B3(3/5/20) 2 8245 762 278 189 217 203

geomorphology 1 937 162 59 46 44 52

Table 12: Computational results for effect of branching strategy across different examples. In
particular, we consider how the number of nodes needed to prove optimality (up to numerical
tolerance) changes across different choices of ε, where ε is as in Section 4.4. Recall that ε = 0
corresponds to a näıve choice of branching, while ε > 0 corresponds to a modified branching. All
other parameters as in Table 2, including the branching index. For synthetic examples, the instances
are initialized with random seed 1.

Example r∗
Nodes considered for

Näıve strategy Modified strategy
A1(3/10) 2 99 78
B1(6/50) 2 135 50
B3(3/5/20) 2 375 217

geomorphology 1 43 44

Table 13: Computational results for effect of node selection strategy across different examples.
In particular, we consider how the number of nodes needed to prove optimality (up to numerical
tolerance) changes across the näıve and modified branching strategies as described in Section 4.4.
All other parameters as in Table 2. For synthetic examples, the instances are initialized with random
seed 1.

Example r∗
Upper CE LB CE LB
Bound with tightening without tightening

A1(3/10) 2 0.88 0.70 0.39
B1(6/50) 2 0.11 −0.15 −0.17
B3(3/5/20) 2 1.00 0.62 0.51

geomorphology 1 4.06 3.78 3.78

Table 14: Computational results for effect of root node bound tightening across different examples.
In particular, we consider how the convex envelope lower bound (denoted “CE LB”) compares with
and without bound tightening at the root node (see Section 4.5). All other parameters as in Table
2. “Upper bound” displayed is as in Table 2 and is included for scale (i.e., to compare the relative
impact of tightening). For synthetic examples, the instances are initialized with random seed 1.

Example r∗
Nodes considered for TOL =
0.10 0.05 0.025

A1(3/10) 2 78 287 726
B1(6/50) 2 1 50 262
B3(3/5/20) 2 217 1396 5132

geomorphology 1 44 217 978

Table 15: Computational results for numerical tolerance TOL across different examples. In partic-
ular, we consider how the number of nodes needed to prove optimality changes as a function of the
additive numerical tolerance TOL chosen for algorithm termination. All other parameters as in Table
2. For synthetic examples, the instances are initialized with random seed 1.
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In other words, the alternative branching strategy can have a substantial impact on
the number of nodes considered in the branch-and-bound tree. As a direct consequence,
this strategy can drastically reduce the computation time needed to prove optimality. As
the examples suggest, it is likely that ε should be chosen dynamically during algorithm
execution, as the particular choice depends on a given problem’s structure. However, we
set ε = 0.4 for all other computational experiments because this appears to offer a distinct
benefit over the näıve strategy of setting ε = 0.

Performance of Node Selection Strategy: We now turn our attention to the node
selection strategy as detailed in Section 4.6. Recall that node selection considers how to
pick which node to consider next in the current branch-and-bound tree at any iteration
of Algorithm 2. We compare two strategies: the näıve strategy which selects the node
with worst convex envelope bound (as explicitly written in Algorithm 2) and the modified
strategy which employs randomness and Weyl bounds to consider nodes which might not
be advantageous to fathom when only convex envelope bounds are considered.

The comparison is shown in Table 13. We see that this strategy is advantageous overall
(with only the example G giving a negligible decrease in performance). The benefit is par-
ticularly strong for examples from the B classes which have highly structured underlying
factors. For such examples, there is a large difference between the convex envelope bounds
and the Weyl bounds at the root node (see e.g. Table 5). Hence, an alternative branching
strategy which incorporates the eigenvalue information provided by Weyl bounds has po-
tential to improve beyond the näıve strategy. Indeed, this appears to be the case across all
examples where such behavior occurs.

Performance of Bound Tightening All computational results employ bound tighten-
ing as developed in Section 4.5, but only at the root node. Bound tightening, which requires
repeated eigenvalue computations, is a computationally expensive process. For this reason,
we have chosen not to employ bound tightening at every node in the branch-and-bound
tree. From a variety of computational experiments, we observed that the most important
node for bound tightening is the root node, and therefore it is a reasonable choice to only
employ bound tightening there. Consequently, we employ pruning via Weyl’s method (de-
tailed in Section 4.5 as well) at all nodes in the branch-and-bound tree. (Recall that bound
tightening can be thought of as optimal pruning via Weyl’s method.)

In Table 14 we show the impact of bound tightening at the root node in terms of the
improvement in the lower bounds provided by convex envelopes. The results for the class
A1 are particularly distinctive. Indeed, for this class bound tightening has a substantial
impact on the quality of the convex envelope bound (for the example A1(3/10) given,
the improvement is from a relative gap at the root node of 56% to a gap of 20%). For
the examples shown, bound tightening offers the least improvement in the real example
geomorphology. In light of Table 8 this is not too surprising, as Weyl’s method (at the
root node) is not particular effective for this example. As Weyl’s inequality is central to
bound tightening, problems for which Weyl’s inequality is not particularly effective tend to
experience less benefit from bound tightening at the root node.

Influence of Optimality Tolerance We close this section by assessing the influence of
the optimality tolerance for termination, TOL. In particular, we study how the number of
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nodes to prove optimality changes as a function of additive gap necessary for termination.
The corresponding results across the four examples are shown in Table 15. Not surprisingly,
as the gap necessary for termination is progressively halved, the corresponding number of
nodes considered increases substantially. However, it is important to note that even though
the gap at termination is smaller as this tolerance decreases (by design), for these examples
the best feasible solution remains unchanged. In other words, the increase in the number of
nodes is the price for more accurately proving optimality and not for finding better feasible
solutions. Indeed, as noted earlier, the solutions found via conditional gradient methods at
the outset are of remarkably high quality.

6. Conclusions

We analyze the classical rank-constrained FA problem from a computational perspective.
We proposed a general, flexible family of rank-constrained, nonlinear SDO-based formu-
lations for the task of approximating an observed covariance matrix Σ as the sum of a
PSD low-rank component Θ and a diagonal matrix Φ (with nonnegative entries) subject to
Σ−Φ being PSD. Our framework enables us to estimate the underlying factors and unique
variances under the restriction that the residual covariance matrix is semidefinite—this is
important for statistical interpretability and understanding the proportion of variance ex-
plained by a given number of factors. This constraint, however, seems to ignored by most
other widely used methods in FA.

We introduce a novel exact reformulation of the rank-constrained FA problem as a
smooth optimization problem with convex, compact constraints. We present a unified al-
gorithmic framework, utilizing modern techniques in nonlinear optimization and first order
methods in convex optimization to obtain high-quality solutions for the FA problem. At the
same time, we use techniques from discrete and global optimization to demonstrate that
these solutions are often provably optimal. We provide computational evidence demon-
strating that the methods proposed herein provide high quality estimates with improved
accuracy when compared to existing, popularly-used methods in FA.

In this work we have demonstrated that a previously intractable rank optimization
problem can be solved to provable optimality. We envision that ideas similar to those used
here can be used to address an even larger class of estimation problems with underlying
matrix structure. In this way, we anticipate significant progress on such problems in the
next decade, particularly in light of myriad advances throughout distinct areas of modern
optimization.
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Appendix A

This appendix contains all proofs for results presented in the main text.
Proof of Proposition 1:

(a) We start by observing that for any two real symmetric matrices A,B (with dimensions
p × p) and the matrix q-norm, a result due to Mirsky (this is also known as the q-
Wielandt-Hoffman inequality; see e.g. Stewart and Sun 1990, p. 205) states:

‖A−B‖q ≥ ‖λ(A)− λ(B)‖q, (46)

where λ(A) and λ(B) denote the vector of eigenvalues of A and B, respectively, ar-
ranged in decreasing order, i.e., λ1(A) ≥ λ2(A) ≥ . . . ≥ λp(A) and λ1(B) ≥ λ2(B) ≥
. . . ≥ λp(B). Using this result for Problem (4), it is easy to see that for fixed Φ

{Θ : Θ � 0, rank(Θ) ≤ r} = {Θ : λ(Θ) ≥ 0, ‖λ(Θ)‖0 ≤ r} , (47)

where ‖λ(Θ)‖0 counts the number of non-zero elements of λ(Θ). If we partially min-
imize the objective function in Problem (4), with respect to Θ (with Φ fixed), and
use (46) along with (47), we have the following inequality:

inf
Θ

‖(Σ−Φ)−Θ‖qq s.t. Θ � 0, rank(Θ) ≤ r
≥ inf

λ(Θ)
‖λ(Σ−Φ)− λ(Θ)‖qq s.t. λ(Θ) ≥ 0, ‖λ(Θ)‖0 ≤ r. (48)

Since Σ−Φ � 0, it follows that the minimum objective value of the r.h.s. optimization
Problem (48) is given by

∑p
i=r+1 λ

q
i (Σ−Φ) and is achieved for λi(Θ) = λi(Σ−Φ) for

i = 1, . . . , r. This leads to the following inequality:

inf
Θ:Θ�0,rank(Θ)≤r

‖(Σ−Φ)−Θ‖qq ≥
p∑

i=r+1

λqi (Σ−Φ). (49)

Furthermore, if Up×p denotes the matrix of p eigenvectors of Σ−Φ, then the following
choice of Θ∗:

Θ∗ := U diag
(
λ1(Σ−Φ), . . . , λr(Σ−Φ), 0, . . . , 0

)
U′, (50)

gives equality in (49). This leads to the following result:

inf
Θ:Θ�0,rank(Θ)≤r

‖Σ− (Θ + Φ)‖qq = ‖Σ− (Θ∗ + Φ)‖qq =

p∑
i=r+1

λqi (Σ−Φ). (51)

(b) The minimizer Θ∗ of Problem (51) is given by (50). In particular, if Φ∗ solves Prob-
lem (12) and we compute Θ∗ via (50) (with Φ = Φ∗), then the tuple (Φ∗,Θ∗) solves
Problem (4). This completes the proof of the proposition.

44



Certifiably Optimal Low Rank Factor Analysis

Proof of Proposition 2: We build upon the proof of Proposition 1. Note that any Φ
that is feasible for Problems (14) and (4) is PSD. Observe that Θ∗ (appearing in the proof
of Proposition 1) as given by (50) satisfies:

Σ−Φ−Θ∗ � 0 =⇒ Σ−Θ∗ � 0, (52)

where, the right hand side of (52) follows since Φ � 0. We have thus established that the
solution Θ∗ to the following problem

minimize
Θ

‖(Σ−Φ)−Θ‖qq
s.t. Θ � 0

rank(Θ) ≤ r,

(53)

is feasible for the following optimization problem:

minimize
Θ

‖(Σ−Φ)−Θ‖qq
s.t. Θ � 0

rank(Θ) ≤ r
Σ−Θ � 0.

(54)

Since Problem (54) involves minimization over a subset of the feasible set of Problem (53),
it follows that Θ∗ is also a minimizer for Problem (54). This completes the proof of the
equivalence.

Proof of Theorem 1:

(a) The proof is based on ideas appearing in Overton and Womersley (1992), where it was
shown that the sum of the top r eigenvalues of a real symmetric matrix can be written
as the solution to a linear SDO problem.

By an elegant classical result due to Fan (Stewart and Sun, 1990), the smallest (p− r)
eigenvalues of a real symmetric matrix A can be written as

p∑
i=r+1

λi(A) = inf Tr (V′AV)

s.t. V′V = I,
(55)

where the optimization variable is V ∈ Rp×(p−r). We will show that the solution to
the above nonconvex problem can be obtained via the following linear (convex) SDO
problem:

minimize Tr (WA)

s.t. I �W � 0
Tr(W) = p− r.

(56)
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Clearly, Problem (56) is a convex relaxation of Problem (55)—hence its minimum value
is at least smaller than

∑p
i=r+1 λi(A). By standard results in convex analysis (Rock-

afellar, 1996), it follows that the minimum of the above linear SDO problem (56) is
attained at the extreme points of the feasible set of (56). The extreme points (see for
example, Overton and Womersley, 1992; Vandenberghe and Boyd, 1996) of this set are
given by the set of orthonormal matrices of rank p− r:{

VV′ : V ∈ Rp×(p−r) : V′V = I
}
.

It thus follows that the (global) minima of Problems (56) and (55) are the same. Ap-
plying this result to the PSD matrix A = (Σ−Φ)q appearing in the objective of (12),
we arrive at (16). This completes the proof of part (a).

(b) The statement follows from (50).

Proof of Proposition 3: Observe that, for every fixed Φ, the function gq(W,Φ) is concave
(in fact, it is linear). Since Gq(W) is obtained by taking a point-wise infimum (with respect
to Φ) of the concave function gq(W,Φ), the resulting function Gq(W) is concave (Boyd
and Vandenberghe, 2004).

The expression of the sub-gradient (19) is an immediate consequence of Danskin’s The-
orem (Bertsekas, 1999; Rockafellar, 1996).

Proof of Theorem 2: Using the concavity of the function Gq(W) we have:

Gq(W
(i+1)) ≤ Gq(W

(i)) + 〈∇Gq(W(i)),W(i+1) −W(i)〉
= Gq(W

(i)) + ∆(W(i)).
(57)

Note that ∆(W(i)) ≤ 0 and Gq(W
(i+1)) ≤ Gq(W

(i)) for all i ≤ k. Hence the (decreasing)
sequence of objective values converge to Gq(W

(∞)) (say) and ∆(W(∞)) ≥ 0. Adding up
the terms in (57) from i = 1, . . . , k we have:

Gq(W
(∞))−Gq(W(1)) ≤ Gq(W(k+1))−Gq(W(1)) ≤ −k min

i=1,...,k

{
−∆(W(k))

}
(58)

from which (26) follows.

Proof of Theorem 5: By construction,

max
[`,u]∈Nodes

‖u− `‖1

decreases monotonically to zero as the iterative scheme proceeds. Therefore, to show
convergence it suffices to show that the additive error at a node n = [`,u] ∈ Nodes is
O(‖u − `‖1). Fix an arbitrary node n = [`,u] ∈ Nodes. Without loss of generality,
we may assume that (CFA1) as restricted to diag(Φ) ∈ [`,u] has a feasible solution; as
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such, let Φ∗ be an optimal solution. Likewise, let Φ† be an optimal solution (LS`,u).
First note that

∑p
i=r+1 σi(Σ − Φ∗) ≤

∑p
i=r+1 σi(Σ − Φ†). Now, by two applications

of the bound in Theorem 4 and the fact that Φ† is optimal to (LS`,u), we have that∑p
i=r+1 σi(Σ−Φ†) ≤

∑p
i=r+1 σi(Σ−Φ∗) + ‖u− `‖1/2. Hence, the additive error satisfies∣∣∣∣∣

p∑
i=r+1

σi(Σ−Φ†)−
p∑

i=r+1

σi(Σ−Φ∗)

∣∣∣∣∣ ≤ ‖u− `‖1/2,
as was to be shown.

Appendix B

This appendix contains an alternative conditional gradient method for finding feasible so-
lutions. Since Problem (16) involves the minimization of a smooth function over a compact
convex set, the CG method requires iteratively solving the following convex optimization
problem:

minimize

〈
∇gp(W(k),Φ(k)),

(
W
Φ

)〉
s.t. W ∈ Ψp,p−r

Φ ∈ FΣ,

(59)

where ∇gp(W(k),Φ(k)) is the derivative of gp(W
(k),Φ(k)) at the current iterate (W(k),

Φ(k)). Note that due to the separability of the constraints in W and Φ, Problem (59)
splits into two independent optimization problems with respect to W and Φ. The overall
procedure is outlined in Algorithm 3.

Since ∇Wgp(W
(k),Φ(k)) = (Σ − Φ(k))q, the update for W appearing in (60) requires

solving:

minimize
W∈Ψp,p−r

〈W, (Σ−Φ(k))q〉. (63)

Similarly, the update for Φ appearing in (61) requires solving:

minimize
Φ∈FΣ

p∑
i=1

Φi`i, (64)

where the vector (`1, . . . , `p) is given by diag(`1, . . . , `p) = −q diag
(
W(k)(Σ−Φ)q−1

)
,

where diag(A) is a diagonal matrix having the same diagonal entries as A. The sequence
(W(k),Φ(k)) is recursively computed via Algorithm 3 until a convergence criterion is met:

gp(W
(k),Φ(k))− gp(W(k+1),Φ(k+1)) ≤ TOL · gp(W(k),Φ(k)), (65)

for some user-defined tolerance TOL > 0.
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Algorithm 3 A CG based algorithm for Problem (16)

1 Initialize with (W(1),Φ(1)), feasible for Problem (16) and repeat the following Steps 2-
3 until the convergence criterion described in (65) is met.

2 Solve the linearized Problem (59), which requires solving two separate (convex) SDO
problems over W and Φ:

W
(k+1) ∈ arg min

W∈Ψp,p−r

〈W,∇Wgp(W
(k),Φ(k))〉 (60)

Φ
(k+1) ∈ arg min

Φ∈FΣ

〈Φ,∇Φgp(W
(k),Φ(k))〉 (61)

where ∇Wgp(W,Φ) (and ∇Φgp(W,Φ)) is the partial derivative with respect to W
(respectively, Φ).

3 Obtain the new iterates:

W(k+1) = W(k) + ηk(W
(k+1) −W(k)),

Φ(k+1) = Φ(k) + ηk(Φ
(k+1) −Φ(k)).

(62)

with ηk ∈ [0, 1] chosen via an Armijo type line-search rule (Bertsekas, 1999).

A tuple (W∗,Φ∗) satisfies the first order stationarity conditions (Bertsekas, 1999) for
Problem (16), if the following condition is satisfied:

inf

〈
∇gp(W∗,Φ∗),

(
W −W∗

Φ−Φ∗

)〉
≥ 0

s.t. W ∈ Ψp,p−r

Φ ∈ FΣ.

(66)

Note that Φ∗ defined above also satisfies the first order stationarity conditions for Prob-
lem (12).

The following theorem presents a global convergence guarantee for Algorithm 3:

Theorem 8 (Bertsekas, 1999) Every limit point (W(∞),Φ(∞)) of a sequence (W(k), Φ(k))
produced by Algorithm 3 is a first order stationary point of the optimization Problem (16).

Numerical experiments (in line with those from Section 5) suggest that Algorithm 3
performs similarly to Algorithm 1, and therefore we only present the results for Algorithm
1 in the main text. Algorithm 1 has the advantage that it does not require a line search,
unlike Algorithm 3. Finally, we note that for Algorithm 3 the update for W at iteration k
for solving Problem (63) corresponds to W̃ = (Σ−Φ(k))q.
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